精英家教网 > 高中数学 > 题目详情
7.已知长方体ABCD-A1B1C1D1中,AB=4,BC=3,AA1=5,则异面直线BD1与AC所成角的余弦值为$\frac{{7\sqrt{2}}}{50}$.

分析 建立空间直角坐标系,利用向量法能求出AC与BD1所成角的余弦值.

解答 解:建立如图坐标系,
∵在长方体ABCD-A1B1C1D1中,AB=4,BC=3,AA1=5,
∴D1(0,0,5),B(3,4,0),
A(3,0,0),C(0,4,0),
∴$\overrightarrow{B{D}_{1}}$=(-3,-4,5),$\overrightarrow{AC}$=(-3,4,0).
∴cos<$\overrightarrow{B{D}_{1}}$,$\overrightarrow{AC}$>=$\frac{9-16}{\sqrt{9+16+25}•\sqrt{9+16}}$=-$\frac{{7\sqrt{2}}}{50}$.
∴AC与BD1所成角的余弦值$\frac{{7\sqrt{2}}}{50}$.
故答案为:$\frac{{7\sqrt{2}}}{50}$.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下面四个函数:(1)y=1-x;(2)y=2x-1;(3)y=x2-1;(4)y=$\frac{5}{x}$,其中定义域与值域相同的函数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在口袋中有不同编号的5个白球和4个黑球,如果不放回地依次取两个球,则在第一次取到白球的条件下,第二次也取得白球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要使如图所示的程序框图输出的P不小于60,则输入的n值至少为(  )
A.5B.6C.7D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C的对边分别为a、b、c,且bcosC+(2a+c)cosB=0.
(1)求角B的度数;
(2)若b=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于x的二次方程x2+ax+a2-4=0的两根异号,则a的取值范围是(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x,y∈R+,$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(1,y-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{1}{x}$+$\frac{1}{y}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列与y=|x|是同一函数的是(  )
A.y=($\sqrt{x}$)2B.y=$\sqrt{{x}^{2}}$C.y=$\left\{\begin{array}{l}{x,(x>0)}\\{-x,(x<0)}\end{array}\right.$D.y=x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=(x-2)(x+a)是偶函数,则实数a的值为(  )
A.2B.0C.-2D.±2

查看答案和解析>>

同步练习册答案