分析 根据向量的数量积的运算得到x+y=1,再由($\frac{1}{x}$+$\frac{1}{y}$)(x+y)=2+$\frac{y}{x}$+$\frac{x}{y}$,根据基本不等式可得答案.
解答 解:$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(1,y-1),$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=x+y-1=0,
即x+y=1,
∵x,y∈R+,
∴($\frac{1}{x}$+$\frac{1}{y}$)(x+y)=2+$\frac{y}{x}$+$\frac{x}{y}$≥2+2$\sqrt{\frac{y}{x}•\frac{x}{y}}$=4,当且仅当x=y=$\frac{1}{2}$时取等号.
故答案为:4.
点评 本题为基本不等式求最值的应用,注意“1”的代入是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-2y+9=0或x+2y+3=0 | B. | 2x-y+9=0或2x+y+3=0 | ||
| C. | x+2y+3=0或x-2y+9=0 | D. | x+2y+9=0或2x-y+3=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com