精英家教网 > 高中数学 > 题目详情
已知全集U=R,集合M={x|
x-1
x+1
<0},N={x|x2-x<0},则集合M、N的关系用韦恩(Venn)图可以表示为(  )
A、
B、
C、
D、
考点:Venn图表达集合的关系及运算
专题:集合
分析:求出集合M,N,利用元素之间的关系即可得到结论.
解答: 解:M={x|
x-1
x+1
<0}={x|-1<x<1},N={x|x2-x<0}={x|0<x<1},
∴N?M?U,
故对应的关系为B.
故选:B.
点评:本题主要考查集合关系的判断,利用元素之间的关系是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于集合A,如果定义了一种运算“⊕”,使得集合A中的元素间满足下列4个条件:
(ⅰ)?a,b∈A,都有a⊕b∈A;
(ⅱ)?e∈A,使得对?a∈A,都有e⊕a=a⊕e=a;
(ⅲ)?a∈A,?a′∈A,使得a⊕a′=a′⊕a=e;
(ⅳ)?a,b,c∈A,都有(a⊕b)⊕c=a⊕(b⊕c),
则称集合A对于运算“⊕”构成“对称集”.
下面给出三个集合及相应的运算“⊕”:
①A={整数},运算“⊕”为普通加法;
②A={复数},运算“⊕”为普通减法;
③A={正实数},运算“⊕”为普通乘法.
其中可以构成“对称集”的有
 
.(把所有正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,如果?x∈D,?y∈D,使得f(x)=-f(y)成立,则称函数f(x)为“Ω函数”.给出下列四个函数:
①y=sinx;
②y=2x
③y=
1
x-1

④f(x)=lnx,
则其中“Ω函数”共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

一几何体的三视图如图,该几何体的顶点都在球O的球面上,球O的表面积是(  )
A、2πB、4πC、8πD、16π

查看答案和解析>>

科目:高中数学 来源: 题型:

(tan80°-4cos10°)•
3-sin70°
2-cos210°
=(  )
A、
3
B、2
C、2
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数(x,y)满足条件
x+2y≤4
2x+y≤4
x≥0
y≥0
,则z=
x2+(y+1)2
的最大值为(  )
A、
3
B、
65
3
C、
65
9
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是(  )
A、1cm2
B、3cm2
C、(2
3
+
15
)cm2
D、(
3
+
15
)cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,4,5,6这六个数中,每次取出两个不同的数记为a,b,则共可得到2 
b
a
的不同值的个数是(  )
A、20B、22C、24D、28

查看答案和解析>>

科目:高中数学 来源: 题型:

电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.如图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表.
非体育迷 体育迷 合计
合计
(2)根据列联表的独立性检验,有多大的把握认为“体育迷”与性别有关?
(3)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.
参考公式:x2=
n(ad-bc)2
(a+b)(b+c)(a+c)(b+d)
(其中n=a+b+c+d)
x2≤2.706 x2>2.706 x2>3.841 x2>6.635
是否有关联 没有关联 90% 95% 99%

查看答案和解析>>

同步练习册答案