精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)为奇函数,且函数f(2x+1)的周期为5,若f(1)=5,则f(2009)+f(2010)的值为
 
考点:函数奇偶性的性质,抽象函数及其应用
专题:函数的性质及应用
分析:利用函数f(2x+1)的周期性写出一个等式,通过换元得到f(x)的周期,利用周期性得到f(2009)=f(-1),f(2010)=f(0),利用奇函数求出f(-1),f(0)的值.
解答: 解:∵函数f(2x+1)的周期是5
∴[2(x+5)+1]=f(2x+1)
即f(2x+11)=f(2x+1)
即f(y+10)=f(y)
故函数f(x)的周期是10
∴f(2009)=f(-1),f(2010)=f(0)
∵函数f(x)为定义在R上的奇函数
∴f(0)=0,f(-1)=-f(1)=-5
∴f(2009)+f(2010)的值为-5.
故答案为:-5.
点评:解决函数的周期性、单调性、奇偶性的问题,一般利用各个性质的定义得到一些已知条件中没有的等式,通过它们,判断出函数的其它性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了“频数分布直方图”,请回答:
(1)该中学参加本次数学竞赛的有多少人?
(2)如果90分以上(含90分)获奖,那么获奖率是多少?
(3)这次竞赛成绩的中位数和众数分别落在哪个分数段内?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明方程2x+x=4在区间(1,2)内有唯一一个实数解,并求出这个实数解(精确到0.2).参考数据:
x1.1251.251.3751.51.6251.751.875
2x2.182.382.592.833.083.363.67

查看答案和解析>>

科目:高中数学 来源: 题型:

在△AOB中,O为坐标原点,A(1,cosθ),B(sinθ,1),θ∈(0,
π
2
],则△AOB面积的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),满足f(x)=-f(x+1),且当3≤x≤4时,f(x)=-x,则当0≤x≤1时,f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

学校运动会,某班所有同学都参加了羽毛球或乒乓球比赛,已知该班共有23人参加羽毛球赛,35人参加乒乓球赛,既参加羽毛球又参加乒乓球赛有6人,则该班学生数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:

将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形按从小到大的顺序组成一个新数列{bn},可以推测:b2013是数列{an}中的第
 
项.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则f(x)的减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1,C2的极坐标方程分别为ρ=4cos(θ+
π
6
)和ρcos(θ+
π
6
)=5,设点P在曲线C1上,点Q在C2上,则|PQ|的最小值为
 
..

查看答案和解析>>

同步练习册答案