分析 设F1、F2是双曲线的左右焦点,然后得到两个关于|PF1|与|PF2|的等式,然后分别求解,最后得出|PF1||PF2|=2,解出结果.
解答 解:不妨设F1、F2是双曲线的左右焦点,
P为右支上一点,
|PF1|-|PF2|=2$\sqrt{n}$①
|PF1|+|PF2|=2$\sqrt{n+2}$②,
由①②解得:
|PF1|=$\sqrt{n+2}$+$\sqrt{n}$,|PF2|=$\sqrt{n+2}$-$\sqrt{n}$,
得:|PF1|2+|PF2|2=4n+4=|F1F2|2,
∴PF1⊥PF2,
又由①②分别平方后作差得:
|PF1||PF2|=2,
则△PF1F2的面积为S=$\frac{1}{2}$|PF1||PF2|=$\frac{1}{2}×2$=1,
故答案为:1
点评 本题考查双曲线的应用,通过设出双曲线的焦点,建立等式,并求解,本题考查了学生对双曲线知识的熟练灵活应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y′=3x2-$\frac{1}{{x}^{2}}$ | B. | y′=3x2-$\frac{1}{x}$ | C. | y′=3x2+$\frac{1}{{x}^{2}}$ | D. | y′=3x2+$\frac{1}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1-a}{2a+b}$ | B. | $\frac{1-a}{a+2b}$ | C. | $\frac{1+a}{a+2b}$ | D. | $\frac{1+a}{2a+b}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com