精英家教网 > 高中数学 > 题目详情
13.已知四个数成等差数列,把它们分别加上4,3,3,5之后,成等比数列,求这四个数.

分析 根据等比数列和等差数列的定义建立方程关系进行求解即可.

解答 解:设四个数分别为a-3d,a-d,a+d,a+3d,
把它们分别加上4,3,3,5之后为a-3d+4,a-d+3,a+d+3,a+3d+5,这四个数成等比数列,
则(a-d+3)2=(a-3d+4)(a+d+3)且(a+d+3)2=(a-d+3)(a+3d+5),
整理得4d2-2a+2d-6=0 ①
且4d2-a-d-3=0  ②,
②-①得a=3d-3,代入②得d2-d=0,
解得d=0,a=-3或d=1,a=0,
当d=0,a=-3时,四个数分别为0,0,0,0,把它们分别加上4,3,3,5之后为4,3,3,5不成等比数列,不满足条件.
当d=1,a=0,四个数分别为-3,-1,1,3,把它们分别加上4,3,3,5之后为1,2,4,8成等比数列,满足条件.
故四个数分别为-3,-1,1,3

点评 本题主要考查等比数列和等差数列的计算,根据条件建立方程关系是解决本题的关键.计算量比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{3}$sin(π+x)(sin($\frac{3π}{2}$+x)-cos2x
(1)求函数f(x)的最小正周期;
(2)若θ∈[-$\frac{π}{2}$,0],f($\frac{θ}{2}$+$\frac{π}{3}$)=$\frac{3}{10}$,求sin(2θ-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在长方形ABB1A1中,AB=2AA1=2,C,C1分别是AB,A1B1的中点(如图一).将此长方形沿CC1对折,使平面ACC1A1⊥平面CBB1C1(如图二),已知D是AB的中点.
(Ⅰ)求证:BC1∥平面A1CD;
(Ⅱ)求证:平面A1CD⊥平面ABB1A1
(Ⅲ)求三棱锥C1-A1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图(1),矩形ABCD中,AB=2AD,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE.且在射线CE上取一点M,使EM=AB,如图(2),求证:DE⊥平面ADM.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义域为R的函数f(x)满足条件①f(x)=f(-x)和条件②f(x-1)=f(x+1),且当0≤x≤1时,f(x)=2x-1,若函数F(x)=f(x)-loga|x|(a>1)恰有10个零点,则实数a的取值范围为(5,7).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx+φ)(A≠0,ω≠0),g(x)=Acos(ωx+φ),若对于任意实数x恒有f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x),试求g($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某校团委组织“共圆中国梦”知识演讲比赛活动,现有4名选手参加最后决赛,若每位选手都可以从4个备选题目中任选出一个进行演讲,则恰有一个题目没有被这4位选手选中的情况有(  )
A.36种B.72种C.144种D.288种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=2x且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2a•g(x)+h(2x)≥0对任意x∈[1,2]恒成立,则实数a的取值范围是[-$\frac{17}{12}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.有一块铁皮零件,其形状是由边长为40cm的正方形截去一个三角形ABF所得的五边形ABCDE,其中AF=12cm,BF=10cm,如图所示.现在需要用这块材料截取矩形铁皮DMPN,使得矩形相邻两边分别落在CD,DE上,另一顶点P落在边CB或BA边上.设DM=xcm,矩形DMPN的面积为ycm2. 
(1)试求出矩形铁皮DMPN的面积y关于x的函数解析式,并写出定义域;
(2)试问如何截取(即x取何值时),可使得到的矩形DMPN的面积最大?

查看答案和解析>>

同步练习册答案