精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=Asin(ωx+φ)(A≠0,ω≠0),g(x)=Acos(ωx+φ),若对于任意实数x恒有f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x),试求g($\frac{π}{3}$)的值.

分析 根据正弦函数和余弦函数的对称性之间的关系进行求解即可.

解答 解:∵f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x),
∴x=$\frac{π}{3}$是函数f(x)的对称轴,
∵f(x)=Asin(ωx+φ)(A≠0,ω≠0),g(x)=Acos(ωx+φ),
∴此时($\frac{π}{3}$,0)为g(x)的对称中心,
即g($\frac{π}{3}$)=0.

点评 本题主要考查三角函数图象和性质的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数y=ln(x-2)+$\sqrt{3-x}$的定义域(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥 A-BCDE中,侧面△ADE为等边三角形,底面 BCDE是等腰梯形,且CD∥B E,DE=2,CD=4,∠CD E=60°,M为D E的中点,F为AC的中点,且AC=4.
(1)求证:平面 ADE⊥平面BCD;
(2)求证:FB∥平面ADE;
(3)求四棱锥A-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=lnx-$\frac{x}{4}$+$\frac{3}{4x}$,g(x)=-x2-2ax+4,若对?x1∈(0,2],?x2∈[1,2],使得f(x1)≥g(x2)成立,则a的取值范围是(  )
A.[-$\frac{1}{8}$,+∞)B.[$\frac{25-8ln2}{16}$,+∞)C.[-$\frac{1}{8}$,$\frac{5}{4}$]D.(-∞,$\frac{5}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四个数成等差数列,把它们分别加上4,3,3,5之后,成等比数列,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.用数学归纳法证明:若n为大于1的整数,则$\frac{1}{3}$+$\frac{1}{7}$+…+$\frac{1}{{2}^{n}-1}$<n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图的程序框图,若输入的a=209,b=76,则输出的a是(  )
A.3B.57C.19D.76

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在如图所示的茎叶图表示的数据中,设众数为a,中位数为b,则$\frac{b}{a}$的值为$\frac{26}{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,点B(0,b),过点B且与BF2垂直的直线交x轴负半轴于点D,且2$\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{{F}_{2}D}$=$\overrightarrow{0}$.
(1)求证:△BF1F2是等边三角形;
(2)若过B、D、F2三点的圆恰好与直线l:x-$\sqrt{3}$y-3=0相切,求椭圆C的方程;
(3)设过(2)中椭圆C的右焦点F2且不与坐标轴垂直的直线l与C交于P、Q两点,M是点P关于x轴的对称点.在x轴上是否存在一个定点N,使得M、Q、N三点共线,若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案