精英家教网 > 高中数学 > 题目详情
3.用数学归纳法证明:若n为大于1的整数,则$\frac{1}{3}$+$\frac{1}{7}$+…+$\frac{1}{{2}^{n}-1}$<n.

分析 直接利用数学归纳法证明问题的步骤,证明不等式即可.

解答 解:(1)n=2时,$\frac{1}{3}$<2,不等式成立;
(2)假设n=k时成立,即$\frac{1}{3}$+$\frac{1}{7}$+…+$\frac{1}{{2}^{k}-1}$<k,
则n=k+1时,有$\frac{1}{3}$+$\frac{1}{7}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k}+{2}^{k}-1}$<k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k}+{2}^{k}-1}$<k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k}}$=k+1
即n=k+1时,不等式成立.
由(1)(2)可得n为大于1的整数,则$\frac{1}{3}$+$\frac{1}{7}$+…+$\frac{1}{{2}^{n}-1}$<n.

点评 本题考查数学归纳法证明含自然数n的表达式的证明方法,注意n=k+1的证明时,必须用上假设,考查理解与应用的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则下图阴影部分表示的集合是(  )
A.[-1,1)B.(-3,1]C.(-∞,3)∪[-1,+∞)D.(-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,△ABC中,AC=BC=$\frac{\sqrt{2}}{2}$AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.
(1)求证:GF∥平面ABC;
(2)求BD与平面EBC所成角的大小;
(3)求几何体EFBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C所对的边分别为a,b,c,且a+b+c=8.若a=2,b=$\frac{5}{2}$,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx+φ)(A≠0,ω≠0),g(x)=Acos(ωx+φ),若对于任意实数x恒有f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x),试求g($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数y=x2的图象与y=n(n>0)的图象所围成的封闭图形的面积为$\frac{32}{3}$,则二项式(1-$\frac{n}{x}$)n的展开式中$\frac{1}{{x}^{2}}$的系数为(  )
A.96B.-96C.16D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{1}{3}$x3-(a-1)x2+b2x,其中a∈{1,2,3,4},b∈{1,2,3},则函数f(x)在R上是增函数的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线C:y2=2px(p>0)上一点M(4,n)(n∈N*)到抛物线C的焦点的距离为5,则${(2x-\frac{1}{x})^n}$的展开式中的常数项为(  )
A.-24B.-6C.6D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=x|x-a|+2x,若a>0,关于x的方程f(x)=9有三个不相等的实数解,则a的取值范围是$({4\;,\;\frac{9}{2}})$.

查看答案和解析>>

同步练习册答案