精英家教网 > 高中数学 > 题目详情
17.若$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{c}$=(-2,4),则$\overrightarrow{c}$等于(  )
A.-$\overrightarrow{a}$+3$\overrightarrow{b}$B.$\overrightarrow{a}$-3$\overrightarrow{b}$C.3$\overrightarrow{a}$-$\overrightarrow{b}$D.-3$\overrightarrow{a}$+$\overrightarrow{b}$

分析 设$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,利用向量坐标运算性质即可得出.

解答 解:设$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,
则$\left\{\begin{array}{l}{-2=x+y}\\{4=x-y}\end{array}\right.$,解得x=1,y=-3.
∴$\overrightarrow{c}$=$\overrightarrow{a}$-3$\overrightarrow{b}$,
故选:B.

点评 本题考查了向量坐标运算性质、向量相等、方程组解的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在三棱锥E-ABC中,AB⊥AC,AB=1,AC=$\frac{\sqrt{2}}{2}$,点D在线段BC上,且BD=2CD,ED⊥平面ABC,F,G,H是EB,EA,EC上的点,FH与ED交于点I.
(I)若$\frac{EF}{EB}$=$\frac{EG}{EA}$=$\frac{EH}{EC}$=$\frac{2}{3}$,证明:GI∥AD;
(Ⅱ)证明:AD⊥BE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知异面直线a与b所成角为60°,过空间内一定点P且与直线a、b所成角均为60°的直线有(  )条.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知正方形ABCD的面积为2,点P在边AB上,则$\overrightarrow{PD}•\overrightarrow{PC}$的最小值为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x||x|≤2},B={x|x2-2x-3≤0},则A∩B=(  )
A.[-1,2]B.[-2,3]C.[-2,1]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2-x-2≤0},B=Z,则A∩B=(  )
A.{-1,0,1,2}B.{-2,-1,0,1}C.{0,1}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.请建立适当的坐标系,求解下列问题:
(Ⅰ)求证:异面直线A1D与BC互相垂直;
(Ⅱ)求二面角(钝角)D-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=e|x|,函数g(x)=$\left\{\begin{array}{l}{ex,x≤4}\\{4{e}^{5-x},x>4}\end{array}\right.$对任意的x∈[1,m](m>1),都有f(x-2)≤g(x),则m的取值范围是(  )
A.(1,2+ln2]B.(1,$\frac{7}{2}$+ln2]C.[ln2,2)D.(2,$\frac{7}{2}$+ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设A(1,0),B(2,1),C是抛物线y2=4x上的动点.
(1)求△ABC周长的最小值;
(2)若C位于直线AB左上方,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案