精英家教网 > 高中数学 > 题目详情
13.若等差数列{an}满足a1+a7+a13=π,则tana7的值为(  )
A.$-\sqrt{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$±\sqrt{3}$D.$\sqrt{3}$

分析 由等差数列{an}的性质可得:a1+a7+a13=3a7,解得a7,即可得出.

解答 解:由等差数列{an}的性质可得:a1+a7+a13=π=3a7
∴a7=$\frac{π}{3}$.
则tana7=$tan\frac{π}{3}$=$\sqrt{3}$.
故选:D.

点评 本题考查了等差数列的性质、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.比较${2^{0.2}},{2^{0.5}},lo{g_3}\frac{3}{2}$的大小20.5>20.2>$lo{g}_{3}\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定义在R上的函数f(x)=$\frac{x+a}{{{x^2}+1}}$(a∈R)是奇函数,函数g(x)=$\frac{mx}{2+x}$的定义域为(-2,+∞).
(1)求a的值;
(2)若g(x)=$\frac{mx}{2+x}$在(-2,+∞)上单调递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(-1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中,真命题是(  )
A.命题“若|a|>b,则a>b”
B.命题“若a=b,则|a|=|b|”的逆命题
C.命题“当x=2时,x2-5x+6=0”的否命题
D.命题“终边相同的角的同名三角函数值相等”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若定义在[-2015,2016]上的函数f(x)满足:对于任意x1,x2∈[-2015,2015]有f(x1+x2)=f(x1)+f(x2)-2014且x>0时,有f(x)>2014,f(x)的最大值、最小值分别为M,N则M+N=(  )
A.2013B.2014C.4026D.4028

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$cosα=\frac{1}{3},cos(α+β)=-\frac{1}{3}$,且$α,β∈(0,\frac{π}{2})$,则cosβ=(  )
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知方程$\frac{{x}^{2}}{k-5}$-$\frac{{y}^{2}}{|k|-2}$=1表示双曲线,那么k的取值范围是(  )
A.k>5B.-2<k<2C.k>2或k<-2D.k>5或-2<k<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.按下图所示的程序框图运算,若输入x=8,则输出k=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定点A(-1,1),动点P在抛物线C:y2=-8x上,F为抛物线C的焦点.
(1)求|PA|+|PF|最小值;
(2)求以A为中点的弦所在的直线方程.

查看答案和解析>>

同步练习册答案