精英家教网 > 高中数学 > 题目详情
已知函数f(x)对任意实数x、y都有f(xy)=f(x)•f(y),且f(-1)=1,f(27)=9,当0≤x<1时,0≤f(x)<1.
(1)求f(0)及f(3)的值;
(2)判断f(x)的奇偶性;
(3)判断f(x)在[0,+∞)上的单调性,并给出证明;
(4)若a≥0且f(a+1)≤
39
,求a的取值范围.
分析:(1)令x=y=0,可求得f(0)=0,利用f(xy)=f(x)•f(y),f(27)=9,可求得f(3);
(2)令y=-1,可求得f(-x)=f(x),从而可判断f(x)的奇偶性;
(3)易证当x>0时,f(x)>0,设0≤x1<x2,可证得0≤f(
x1
x2
)=
f(x1)
f(x2)
<1,从而可证函数f(x)在[0,+∞)上是增函数;
(4)利用函数在[0,+∞)上是增函数,可求得a的取值范围.
解答:解:(1)令x=y=0,得f(0)=f(0)•f(0),
∴f(0)=0或f(0)=1,
又当0≤x<1时,0≤f(x)<1,
∴f(0)=0;
∵f(27)=9,又f(3×9)=f(3)•f(9)=f(3)•f(3)•f(3)=[f(3)]3
∴9=[f(3)]3
∴f(3)=
39

(2)令y=-1,则f(-x)=f(x)•f(-1),
∵f(-1)=1,
∴f(-x)=f(x),且x∈R,
∴f(x)为偶函数.
(3)若x≥0,则f(x)=f(
x
x
)=f(
x
)•f(
x
)=[f(
x
)
]2≥0.
若存在x0>0,使得f(x0)=0,
则f(27)=f(x0
27
x0
)=f(x0)•f(
27
x0
)=0,与f(27)=9矛盾,
∴当x>0时,f(x)>0.
设0≤x1<x2,则0≤
x1
x2
<1,
∴f(x1)=f(
x1
x2
•x2)=f(
x1
x2
)•f(x2),
∴f(
x1
x2
)=
f(x1)
f(x2)

∵当x≥0时f(x)≥0,且当0≤x<1时,0≤f(x)<1.
∴0≤f(
x1
x2
)=
f(x1)
f(x2)
<1,
∴f(x1)<f(x2),故函数f(x)在[0,+∞)上是增函数.
(4)∵f(a+1)≤
39

∴f(a+1)≤f(3),
∵a≥0,
∴a+1∈[0,+∞),3∈[0,+∞),又函数在[0,+∞)上是增函数,
∴a+1≤3,即a≤2,
又a≥0,故0≤a≤2.
点评:本题考查抽象函数及其应用,着重考查函数的单调性与奇偶性的综合应用,考查恒成立问题与推理证明能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab
ab

(3)已知函数f(x)的定义域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中远离0的那个值.写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|<|y-m|,则称x比y接近m.
(1)若x2-1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近2ab
ab

(3)已知函数f(x)的定义域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
ex+1

(Ⅰ)证明函数y=f(x)的图象关于点(0,
1
2
)对称;
(Ⅱ)设y=f-1(x)为y=f(x)的反函数,令g(x)=f-1(
x+1
x+2
),是否存在实数b
,使得任给a∈[
1
4
1
3
],对任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=
1,x∈Q
0,x∈CRQ
,则f(f(x))=
1
1

下面三个命题中,所有真命题的序号是
①②③
①②③

①函数f(x)是偶函数;
②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;
③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.

查看答案和解析>>

同步练习册答案