分析 由已知求出角B,再由正弦定理求得sinA,结合三角形中的大边对大角求得角A.
解答 解:在△ABC中,由a=sinB+cosB=$\sqrt{2}$,得a=$\sqrt{2}$,$\sqrt{2}sin(B+\frac{π}{4})=\sqrt{2}$,
∴sin(B+$\frac{π}{4}$)=1.
∵0<B<π,
∴$\frac{π}{4}<B+\frac{π}{4}<\frac{5}{4}π$,
则B+$\frac{π}{4}=\frac{π}{2}$,即B=$\frac{π}{4}$.
由$\frac{a}{sinA}=\frac{b}{sinB}$,得$\frac{\sqrt{2}}{sinA}=\frac{2}{sin\frac{π}{4}}=\frac{2}{\frac{\sqrt{2}}{2}}=2\sqrt{2}$,
∴sinA=$\frac{1}{2}$.
∵a<b,
∴A=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.
点评 本题考查三角形的解法,考查正弦定理的应用,关键是注意三角形中的大边对大角,是中档题.
科目:高中数学 来源: 题型:解答题
| 等级 | 优秀 | 合格 | 不合格 |
| 男生(人) | 15 | x | 5 |
| 女生(人) | 15 | 3 | y |
| 男生 | 女生 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
| P(K2>k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?=2,φ=$\frac{π}{2}$ | B. | ?=2,φ=π | C. | ?=$\frac{1}{2}$,φ=$\frac{π}{2}$ | D. | ?=$\frac{1}{2}$,φ=$\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 30°或150° | D. | 60°或120° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com