精英家教网 > 高中数学 > 题目详情
13.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=sinB+cosB=$\sqrt{2}$,b=2,则角A的值为$\frac{π}{6}$.

分析 由已知求出角B,再由正弦定理求得sinA,结合三角形中的大边对大角求得角A.

解答 解:在△ABC中,由a=sinB+cosB=$\sqrt{2}$,得a=$\sqrt{2}$,$\sqrt{2}sin(B+\frac{π}{4})=\sqrt{2}$,
∴sin(B+$\frac{π}{4}$)=1.
∵0<B<π,
∴$\frac{π}{4}<B+\frac{π}{4}<\frac{5}{4}π$,
则B+$\frac{π}{4}=\frac{π}{2}$,即B=$\frac{π}{4}$.
由$\frac{a}{sinA}=\frac{b}{sinB}$,得$\frac{\sqrt{2}}{sinA}=\frac{2}{sin\frac{π}{4}}=\frac{2}{\frac{\sqrt{2}}{2}}=2\sqrt{2}$,
∴sinA=$\frac{1}{2}$.
∵a<b,
∴A=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查三角形的解法,考查正弦定理的应用,关键是注意三角形中的大边对大角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知数列{xn}中,x1=10,xn=log2(xn-1-2),则数列{xn}的第2项是3所有项和T=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市在中学生综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级.其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.
(1)某校高一年级有男生500人,女生400人,为了了解性别对该综合素质评价结果的影响,采用分层抽样方法从高一年级抽取了45名学生的综合素质评价结果,并作出频数统计如表:
等级 优秀 合格 不合格
 男生(人) 15 x 5
 女生(人) 15 3y
根据表中统计的数据填写下边2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?
男生女生总计
优秀
非优秀
总计
(2)以(1)中抽取的45名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人.
①求所选3人中恰有2人综合素质评价为“优秀”的概率;
②记X表示这3个人中综合速度评价等级为“优秀”的个数,求X的数学期望.
参考数据与公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
 P(K2>k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin(?x+φ)是偶函数,其图象与直线y=1的交点间的最小距离是π,则(  )
A.?=2,φ=$\frac{π}{2}$B.?=2,φ=πC.?=$\frac{1}{2}$,φ=$\frac{π}{2}$D.?=$\frac{1}{2}$,φ=$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知非零向量$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{b}$|=2,|$\overrightarrow{b}$-t$\overrightarrow{a}$|(t∈R)的最小值为$\sqrt{3}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四边形ABCD中,∠B=∠D=90°,AD=CD=$\sqrt{6}$,∠BAC=60°,E为AC的中点;现将△ACD沿对角线AC折起,使点D在平面ABC上的射影H落在BC上.

(1)求证:AB⊥平面BCD;
(2)求证:CD⊥平面ABD;
(3)求三棱锥D-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=$\sqrt{2}$,M为线段B1D1的中点.
(1)求证:MB⊥AC
(2)求三棱锥D1-ACB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.
(Ⅰ)求证:D1E⊥底面ABCD;
(Ⅱ)若直线BD1与平面ABCD所成的角为$\frac{π}{3}$,求四棱锥D1-ABED体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设a,b,c都是正数,求证:a+b+c≤$\frac{{a}^{2}+{b}^{2}}{2c}$+$\frac{{b}^{2}{+c}^{2}}{2a}$+$\frac{{c}^{2}+{a}^{2}}{2b}$.

查看答案和解析>>

同步练习册答案