精英家教网 > 高中数学 > 题目详情
19.已知F为抛物线E:x2=2py(p>0)的焦点,直线l:y=kx+$\frac{p}{2}$交抛物线E于A,B两点.
(Ⅰ)当k=1,|AB|=8时,求抛物线E的方程;
(Ⅱ)过点A,B作抛物线E的切线l1,l2,且l1,l2交点为P,若直线PF与直线l斜率之和为-$\frac{3}{2}$,求直线l的斜率.

分析 (Ⅰ)根据弦长公式即可求出p的值,问题得以解决,
(Ⅱ)联立方程组,根据韦达定理,即可求出过点A,B作抛物线E的切线l1,l2方程,再求出交点坐标,根据斜率的关系即可求出k的值.

解答 解:(Ⅰ)联立$\left\{\begin{array}{l}y=x+\frac{p}{2}\\{x^2}=2py\end{array}\right.$,消去x得${y^2}-3py+\frac{p^2}{4}=0$,
题设得$|AB|={y_A}+\frac{p}{2}+{y_B}+\frac{p}{2}={y_A}+{y_B}+p=4p=8$,
∴p=2,
∴抛物线E的方程为x2=4y.
(II)设$A({x_1},\frac{1}{2p}x_1^2),B({x_2},\frac{1}{2p}x_2^2)$
联立$\left\{\begin{array}{l}y=kx+\frac{p}{2}\\{x^2}=2py\end{array}\right.$,消去y得x2-2pkx-p2=0,
∴${x_1}+{x_2}=2pk,{x_1}•{x_2}=-{p^2}$,
由$y=\frac{1}{2p}{x^2}$得${y^'}=\frac{1}{p}x$,
∴直线l1,l2的方程分别为$y=\frac{x_1}{p}x-\frac{1}{2p}x_1^2,y=\frac{x_2}{p}x-\frac{1}{2p}x_2^2$,
联立$\left\{\begin{array}{l}y=\frac{x_1}{p}x-\frac{1}{2p}x_1^2\\ y=\frac{x_2}{p}x-\frac{1}{2p}x_2^2\end{array}\right.$得点P的坐标为$(pk,-\frac{p}{2})$,
∴${k_{PF}}=-\frac{1}{k}$,
∴$-\frac{1}{k}+k=-\frac{3}{2}∴k=-2$或$\frac{1}{2}$,
∴直线l的斜率为k=-2或 $k=\frac{1}{2}$.

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,考查直线与抛物线的位置关系,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x+y≤0}\\{2x+y+2≤0}\end{array}\right.$且ax-y+1-a=0,则实数a的取值范围是(  )
A.[-$\frac{1}{3}$,1)B.[-1,$\frac{1}{2}$]C.(-1,$\frac{1}{2}$]D.[-$\frac{1}{3}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)设AB=1,PD与平面ABCD所成的角为$\frac{π}{4}$,求二面角E-AF-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{a(x-1)}{x+2}$.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1-lnx2)(x1+2x2)≤3(x1-x2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知棱长为$\sqrt{6}$的正四面体ABCD(四个面都是正三角形),在侧棱AB上任取一点P(与A,B都不重合),若点P到平面BCD及平面ACD的距离分别为a,b,则$\frac{4}{a}$+$\frac{1}{b}$的最小值为(  )
A.$\frac{7}{2}$B.4C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.2017年2月20日,摩拜单车在济南推出“做文明骑士,周一摩拜单车免费骑”活动,为了解单车使用情况,记者随机抽取了五个投放区域,统计了半小时内被骑走的单车数量,绘制了如图所示的茎叶图,则该组数据的方差为(  )
A.9B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,抛物线E:x2=4y的焦点是椭圆C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若A,B分别是椭圆C的左、右顶点,直线y=k(x-4)(k≠0)与椭圆C交于不同的两点M,N,直线x=1与直线BM交于点P.
(i)证明:A,P,N三点共线;
(ii)求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)设g(x)=xf(x),h(x)=2ax2-(2a-1)x+a-1,若x≥1时,g(x)≤h(x)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案