精英家教网 > 高中数学 > 题目详情
4.已知△ABC的内角A、B、C的对边分别为a、b、c,∠A=2∠B,则$\frac{c}{b}$-$\frac{b}{a}$的取值范围是(-1,$\frac{5}{2}$).

分析 由条件结合三角形的内角和定理,可得B∈(0,$\frac{π}{3}$),即有cosB∈($\frac{1}{2}$,1),再由正弦定理和二倍角公式化简整理,再令cosB=t($\frac{1}{2}$<t<1),则有y=4t2-$\frac{1}{2t}$-1,运用函数的单调性即可得到取值范围.

解答 解:由∠A=2∠B,可得
C=π-A-B=π-3B,
由A,B,C∈(0,π),可得
B∈(0,$\frac{π}{3}$),即有cosB∈($\frac{1}{2}$,1),
由∠A=2∠B,可得
sinA=sin2B=2sinBcosB,
则有$\frac{c}{b}$-$\frac{b}{a}$=$\frac{sinC}{sinB}$-$\frac{sinB}{sinA}$=$\frac{sin3B}{sinB}$-$\frac{sinB}{2sinBcosB}$
=3-4sin2B-$\frac{1}{2cosB}$
=4cos2B-$\frac{1}{2cosB}$-1,
令cosB=t($\frac{1}{2}$<t<1),
则有y=4t2-$\frac{1}{2t}$-1,
由y′=8t+$\frac{1}{2{t}^{2}}$>0,可得
y=4t2-$\frac{1}{2t}$-1在($\frac{1}{2}$,1)递增,
即有-1<y<$\frac{5}{2}$.
故答案为:(-1,$\frac{5}{2}$).

点评 本题考查三角函数的化简和求值,主要考查二倍角公式和正弦定理的运用,同时考查函数的单调性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设集合A={-1,0,1,2,3},B={x|x2-2x>0},则A∩B=(  )
A.{3}B.{2,3}C.{-1,3}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设Q是曲线T:xy=2(x>0)上任意一点,l是曲线T在点Q处的切线,且l交坐标轴于A,B两点,O为坐标原点,则△OAB的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若集合A=$\left\{{({x,y})\left|{\frac{x^2}{2}+{y^2}<1}\right.}\right\},B=\left\{{({x,y})\left|{x∈Z,y∈Z}\right.}\right\}$,则A∩B的元素个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,若直线l与圆C1:x2+y2=1和圆C2:(x-5$\sqrt{2}$)2+(y-5$\sqrt{2}$)2=49都相切,且两个圆的圆心均在直线l的下方,则直线l的斜率为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在△ABC中,如果O为BC边上中线AD上的点,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,那么(  )
A.$\overrightarrow{AO}$=$\overrightarrow{OD}$B.$\overrightarrow{AO}$=2$\overrightarrow{OD}$C.$\overrightarrow{AO}$=3$\overrightarrow{OD}$D.$\overrightarrow{OD}$=2$\overrightarrow{AO}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列an=$\frac{1}{\sqrt{a}+\sqrt{a+1}}$,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知复数z=3+4i,$\overline{z}$对应点B,点A、C满足$\overrightarrow{OA}$-$\overrightarrow{BA}$=$\overrightarrow{OC}$.
(1)求点C的坐标;
(2)若点C在角α的终边上,求sin2α+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=|$\overrightarrow b$|=1,$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{2}$,则|$\overrightarrow a$+2$\overrightarrow b$|=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

同步练习册答案