分析 (Ⅰ)求导,在定义域内解不等式f′(x)>0,f′(x)<0可得单调区间;
(Ⅱ)问题转化为证明$\frac{f′{(x}_{1})-f′{(x}_{2})}{{{x}_{1}-x}_{2}}$-$\frac{2}{{x}_{1}{+x}_{2}}$=$\frac{1}{{x}_{2}{-x}_{1}}$[ln$\frac{{x}_{2}}{{x}_{1}}$-$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$]>0成立,根据函数的单调性证明ln$\frac{{x}_{2}}{{x}_{1}}$-$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$]>0即可.
解答 (Ⅰ)解:定义域为(0,+∞),f′(x)=lnx+x•$\frac{1}{x}$=1+lnx,
令f′(x)>0,则lnx>-1=ln$\frac{1}{e}$,∴x>$\frac{1}{e}$;
令f′(x)<0,则lnx<-1=ln$\frac{1}{e}$,∴0<x<$\frac{1}{e}$,
∴f(x)的单调增区间是($\frac{1}{e}$,+∞),单调减区间是(0,$\frac{1}{e}$).
(Ⅱ)证明:要证$\frac{{f'({x_1})-f'({x_2})}}{{{x_1}-{x_2}}}>\frac{2}{{{x_1}+{x_2}}}$成立,
只需证明$\frac{f′{(x}_{1})-f′{(x}_{2})}{{{x}_{1}-x}_{2}}$-$\frac{2}{{x}_{1}{+x}_{2}}$
=$\frac{1}{{x}_{2}{-x}_{1}}$[(lnx2-lnx1)-$\frac{2{(x}_{2}{-x}_{1})}{{x}_{1}{+x}_{2}}$]
=$\frac{1}{{x}_{2}{-x}_{1}}$[ln$\frac{{x}_{2}}{{x}_{1}}$-$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$]>0成立,
由于$\frac{1}{{x}_{2}{-x}_{1}}$>0,只需ln$\frac{{x}_{2}}{{x}_{1}}$-$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$>0成立,
令g(t)=lnt-$\frac{2(t-1)}{t+1}$,(t>1),
则g′(t)=$\frac{1}{t}$-$\frac{4}{{(t+1)}^{2}}$=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$>0,
∴g(t)在(1,+∞)递增,∴g(t)>g(1)=0,
∴$\frac{{f'({x_1})-f'({x_2})}}{{{x_1}-{x_2}}}>\frac{2}{{{x_1}+{x_2}}}$.
点评 该题考查利用导数研究函数的单调性,考查不等式的证明,考查学生的运算推理能力和转化问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{11}{14}$ | B. | $\frac{12}{7}$ | C. | $-\frac{14}{45}$ | D. | $-\frac{11}{24}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,2] | B. | (0,2) | C. | {0,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 圆锥是由直角三角形绕其一条边所在直线旋转得到的几何体 | |
| B. | 圆台的侧面展开图是一个扇环 | |
| C. | 棱柱的侧棱可以不平行 | |
| D. | 棱台的各侧棱延长后不一定交于一点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若xn>0,$\underset{lim}{n→∞}$xn=M,则M>0 | |
| B. | 若$\underset{lim}{n→∞}$(xn-yn)=0,则$\underset{lim}{n→∞}$xn=$\underset{lim}{n→∞}$yn | |
| C. | 若$\underset{lim}{n→∞}$${x}_{n}^{2}$=N2,则$\underset{lim}{n→∞}$xn=N | |
| D. | 若$\underset{lim}{n→∞}$xn=p,则$\underset{lim}{n→∞}$${x}_{n}^{2}$=p2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com