精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设0<x1<x2,证明:$\frac{{f'({x_1})-f'({x_2})}}{{{x_1}-{x_2}}}>\frac{2}{{{x_1}+{x_2}}}$.

分析 (Ⅰ)求导,在定义域内解不等式f′(x)>0,f′(x)<0可得单调区间;
(Ⅱ)问题转化为证明$\frac{f′{(x}_{1})-f′{(x}_{2})}{{{x}_{1}-x}_{2}}$-$\frac{2}{{x}_{1}{+x}_{2}}$=$\frac{1}{{x}_{2}{-x}_{1}}$[ln$\frac{{x}_{2}}{{x}_{1}}$-$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$]>0成立,根据函数的单调性证明ln$\frac{{x}_{2}}{{x}_{1}}$-$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$]>0即可.

解答 (Ⅰ)解:定义域为(0,+∞),f′(x)=lnx+x•$\frac{1}{x}$=1+lnx,
令f′(x)>0,则lnx>-1=ln$\frac{1}{e}$,∴x>$\frac{1}{e}$;
令f′(x)<0,则lnx<-1=ln$\frac{1}{e}$,∴0<x<$\frac{1}{e}$,
∴f(x)的单调增区间是($\frac{1}{e}$,+∞),单调减区间是(0,$\frac{1}{e}$).
(Ⅱ)证明:要证$\frac{{f'({x_1})-f'({x_2})}}{{{x_1}-{x_2}}}>\frac{2}{{{x_1}+{x_2}}}$成立,
只需证明$\frac{f′{(x}_{1})-f′{(x}_{2})}{{{x}_{1}-x}_{2}}$-$\frac{2}{{x}_{1}{+x}_{2}}$
=$\frac{1}{{x}_{2}{-x}_{1}}$[(lnx2-lnx1)-$\frac{2{(x}_{2}{-x}_{1})}{{x}_{1}{+x}_{2}}$]
=$\frac{1}{{x}_{2}{-x}_{1}}$[ln$\frac{{x}_{2}}{{x}_{1}}$-$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$]>0成立,
由于$\frac{1}{{x}_{2}{-x}_{1}}$>0,只需ln$\frac{{x}_{2}}{{x}_{1}}$-$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$>0成立,
令g(t)=lnt-$\frac{2(t-1)}{t+1}$,(t>1),
则g′(t)=$\frac{1}{t}$-$\frac{4}{{(t+1)}^{2}}$=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$>0,
∴g(t)在(1,+∞)递增,∴g(t)>g(1)=0,
∴$\frac{{f'({x_1})-f'({x_2})}}{{{x_1}-{x_2}}}>\frac{2}{{{x_1}+{x_2}}}$.

点评 该题考查利用导数研究函数的单调性,考查不等式的证明,考查学生的运算推理能力和转化问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则符合条件$|\begin{array}{l}{z}&{1+2i}\\{1-i}&{1+i}\end{array}|$=0的复数z为2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间直角坐标系中的点P(a,b,c),有下列叙述:
①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,-b,c);
②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,-b,-c);
③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,-b,c);
④点P(a,b,c)关于坐标原点的对称点为P4(-a,-b,-c).
其中正确叙述的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足$\frac{a}{7}$=$\frac{b}{4}$=$\frac{c}{5}$,则$\frac{sin2A}{sinB+sinC}$=(  )
A.$-\frac{11}{14}$B.$\frac{12}{7}$C.$-\frac{14}{45}$D.$-\frac{11}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x||x-1|≤1,x∈R},B={x|$\sqrt{x}$≤4,x∈Z},则A∩B=(  )
A.[0,2]B.(0,2)C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.圆锥是由直角三角形绕其一条边所在直线旋转得到的几何体
B.圆台的侧面展开图是一个扇环
C.棱柱的侧棱可以不平行
D.棱台的各侧棱延长后不一定交于一点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设三角形ABC的内角A,B,C的对边分别为a,b,c,且b=$\frac{2\sqrt{3}}{3}$asinB,A为锐角
(1)若a=3,b=$\sqrt{6}$,求角B;
(2)若S△ABC=$\frac{\sqrt{3}}{2}$,b+c=3,b>c,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中正确的是(  )
A.若xn>0,$\underset{lim}{n→∞}$xn=M,则M>0
B.若$\underset{lim}{n→∞}$(xn-yn)=0,则$\underset{lim}{n→∞}$xn=$\underset{lim}{n→∞}$yn
C.若$\underset{lim}{n→∞}$${x}_{n}^{2}$=N2,则$\underset{lim}{n→∞}$xn=N
D.若$\underset{lim}{n→∞}$xn=p,则$\underset{lim}{n→∞}$${x}_{n}^{2}$=p2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若点A(0,1)落在圆C:x2+y2+2x-4y+k=0(C为圆心)的外部,则|AC|=$\sqrt{2}$,实数k的取值范围是(3,5).

查看答案和解析>>

同步练习册答案