【题目】已知函数f(x)=ax2﹣x+a,a∈R,
(1)当a=2时,解不等式f(x)>3;
(2)若函数f(x)有最大值﹣2,求实数a的值.
【答案】
(1)解:当a=2时,f(x)=ax2﹣x+a,
由f(x)>3得2x2﹣x+2>3
解得 或x>1
故不等式的解集为 (﹣∞, ∪(1,+∞)
(2)解:二次函数有最大值,必须a<0
由 得4a2+8a﹣1=0,
解得
由于a<0,故实数
【解析】(1)代入a值,解二次不等式即可;(2)根据二次函数的性质直接求解即可.
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值),还要掌握二次函数的性质(当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】求满足下列各条件的椭圆的标准方程.
(1)长轴长是短轴长的2倍且经过点A(2,0);
(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx﹣x2+1.
(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F,G分别为EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,CD和SC的中点.求证:
(1)直线EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2 ,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角A﹣PB﹣D的余弦值为 ,若E为PB的中点,求EC与平面PAB所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com