分析 令2015x+log2015x=0,利用函数图象的交点个数判断f(x)在(0,+∞)上的零点个数,利用奇函数的性质得出f(x)在(-∞,0)上的零点个数,结合f(0)=0得出答案.
解答 解:∵f(x)是定义在R上的奇函数,
∴f(0)=0,即x=0为f(x)的一个零点.
当x>0时,令f(x)=2015x+log2015x=0,则2015x=-log2015x=log${\;}_{\frac{1}{2015}}$x,
做出y=2015x和y=log${\;}_{\frac{1}{2015}}$x的函数图象,![]()
由图象可得2015x=log${\;}_{\frac{1}{2015}}$x有一解,即f(x)在(0,+∞)上有一个零点,
∵f(x)是奇函数,
∴f(x)在(-∞,0)上有一解.
综上,f(x)在R上共有3个零点.
故答案为:3.
点评 本题考查了函数的零点与函数图象的关系,奇函数的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com