精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{x^2}({x∈[{0,1}]})\\ \frac{1}{x}({x∈({1,e}]})\end{array}$,求∫0ef(x)dx的值.

分析 根据分段函数定积分的运算性质,将∫0ef(x)dx=${∫}_{0}^{1}$x2dx$\frac{4}{3}$+${∫}_{1}^{e}$$\frac{1}{x}$dx,即可求得∫0ef(x)dx=$\frac{4}{3}$.

解答 解:∫0ef(x)dx=${∫}_{0}^{1}$x2dx$\frac{4}{3}$+${∫}_{1}^{e}$$\frac{1}{x}$dx,
=$\frac{1}{3}$x3${丨}_{0}^{1}$+lnx${丨}_{1}^{e}$
=$\frac{4}{3}$,
∴∫0ef(x)dx=$\frac{4}{3}$,

点评 本题考查分段函数求定积分,考查定积分的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.定义在R上的奇函数f(x)满足:当x>0时,f(x)=2015x+log2015x,则在R上,函数f(x)零点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={x|y=lnx},N={x|2x≤8},则M∩N=(  )
A.B.{x|0<x≤3}C.{x|x≤3}D.{x|x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)可导,则$\lim_{△x→0}\frac{f(1-△x)-f(1)}{2△x}$=(  )
A.-2f'(1)B.$\frac{1}{2}f'(1)$C.$-\frac{1}{2}f'(1)$D.$f({\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知x1=1-i(i为虚数单位)是关于x的实系数一元二次方程x2+ax+b=0的一个根,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C的对边分别是a,b,c,若a=20,b=10,B=31°,则△ABC解的情况是(  )
A.无解B.有一解C.有两解D.有无数个解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a>0,b>0,则以下不等式中不恒成立是(  )
A.|x-1|-|x+5|≤6B.a3+b3≥2ab2C.a2+b2+2≥2a+2bD.$\sqrt{|a-b|}≥\sqrt{a}-\sqrt{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.
气温(℃)141286
用电量(度)22263438
(I)求线性回归方程;(参考数据:$\sum_{i=1}^4{x_i}{y_i}=1120,\sum_{i=1}^4{x_i^2=440}$)
(II)根据(1)的回归方程估计当气温为10℃时的用电量.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=2x3-6x2+3,x∈[-2,4]的最大值和最小值.

查看答案和解析>>

同步练习册答案