精英家教网 > 高中数学 > 题目详情
1.求下列函数的导数
(1)y=x2sinx  
(2)y=tanx.

分析 根据导数的运算法则和基本导数公式求导即可.

解答 解:(1)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx,
(2)∵y=tanx=$\frac{sinx}{cosx}$,
∴y′=$\frac{co{s}^{2}x+si{n}^{2}x}{co{s}^{2}x}$=$\frac{1}{co{s}^{2}x}$.

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D为A1B1的中点.
(1)证明:A1C∥平面BC1D;
(2)若A1A=A1C,点A1在平面ABC的射影在AC上,且BC与平面BC1D所成角的正弦值为$\frac{{\sqrt{15}}}{5}$,求三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中哪个与函数y=-x相等(  )
A.$y=-\sqrt{x^2}$B.$y=\frac{-x(x-1)}{x-1}$
C.y=-logaax(a>0且a≠1)D.$y=-\sqrt{x}•\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对任意x∈[0,$\frac{π}{6}$],任意y∈(0,+∞),不等式$\frac{y}{4}$-2cos2x≥asinx-$\frac{9}{y}$恒成立,则实数a的取值范围是(  )
A.(-∞,3]B.[-2$\sqrt{2}$,3]C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,a2=5,a1+a3+a4=19.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}前n项和为Sn,且Sn+$\frac{{a}_{n}-1}{{2}^{n}}$=λ(λ为常数),令cn=bn+1(n∈N*).求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x2-3x+2=0},集合B={x|logx4=2},则A∪B=(  )
A.{-2,1,2}B.{-2,2}C.{1,2}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某程序框图如图所示,该程序运行后输出的S的值是(  )
A.2015B.2016C.3024D.1007

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知在直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,AB=AC=4,AA1=a.棱BB1的中点为E,棱B1C1的中点为F,平面AEF与平面AA1C1C的交线与AA1所成角的正切值为$\frac{2}{3}$,则三棱柱ABC-A1B1C1外接球的半径为$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.
(Ⅰ)若G为AD边上一点,DG=$\frac{1}{3}$DA,求证:EG∥平面BCF;
(Ⅱ)求二面角E-BF-C的余弦值.

查看答案和解析>>

同步练习册答案