精英家教网 > 高中数学 > 题目详情
4.已知二次函数f(x)=x2-4x+b的最小值是0,不等式f(x)<4的解集为A.
(1)求集合A;
(2)设集合B={x||x-2|<a},若集合B是集合A的子集,求a的取值范围.

分析 (1)由二次函数f(x)=x2-4x+b的最小值是0,得b=4,由此利用不等式f(x)<4的解集为A,能求出集合A.
(2)当a≤0时,集合B=∅?A符合题意,当a>0时,集合B={x|2-a<x<2+a},由此利用集合B是集合A的子集,列出不等式组,能求出结果.

解答 解:(1)∵二次函数f(x)=x2-4x+b的最小值是0,
∴$\frac{4×1×b-16}{4×1}$=0,解得b=4,
∵不等式f(x)<4的解集为A,
∴解不等式x2-4x+4<4,得A={x|0<x<4}.
(2)当a≤0时,集合B=∅?A符合题意,
当a>0时,集合B={x|2-a<x<2+a},
∵集合B是集合A的子集,
∴$\left\{\begin{array}{l}{2-a≥0}\\{2+a≤4}\end{array}\right.$,解得0<a≤2,
综上:a的取值范围是(-∞,2].

点评 本题考查集合的求法,考查实数的取值范围的求法,考查二次函数性质、一元二次不等式、子集等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.cos32°sin62°+sin212°sin28°=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将正整数排成如图,其中第i行第j列(按照从左到右的顺序)的那个数记为a(i,j),则数表中的2017应记为2017(81,45).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于线性回归方程$\hat y=\hat bx+\hat a$,下列说法中不正确的是(  )
A.$\hat b$叫做回归系数
B.当$\hat b$>0,x每增加一个单位,y平均增加$\hat b$个单位
C.回归直线必经过点$(\overline x,\overline y)$
D.$\hat a$叫做回归系数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O为坐标原点,F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM与y轴交点为N,且$\overrightarrow{EO}=3\overrightarrow{NO}$,则C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.”公益行“是由某公益慈善基金发起并主办的一款将用户的运动数据转化为公益步数的捐助公益项目的产品,捐助规则是满10000步方可捐助且个人捐出10000步等价于捐出1元,现粗略统计该项目中其中200名的捐助情况表如下:
 捐款金额(单位:元)[0,50)[50,100)[100,150)[150,200)[200,250)[250,300)
 捐款人数 4 152 26 10 3 5
(Ⅰ)将捐款额在200元以上的人称为“健康大使”,请在现有的“健康大使”中随机抽取2人,求捐款额在[200,250)之间人数ξ的分布列;
(Ⅱ)为鼓励更多的人来参加这项活动,该公司决定对捐款额在100元以上的用户实行红包奖励,具体奖励规则如下:捐款额在[100,150)的奖励红包5元,捐款额在[150,200)的奖励红包8元,捐款额在[200,250)的奖励红包10元,捐款额大于250的奖励红包15元,已知该活动参与人数有40万人,将频率视为概率,试估计该公司要准备的红包总金额.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数z满足$\frac{z}{1+i}=zi+1$,则复数z的共轭复数为(  )
A.$\frac{3}{5}+\frac{1}{5}i$B.$\frac{3}{5}-\frac{1}{5}i$C.$\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}中,如果an=2n,n∈N*,那么这个数列是(  )
A.公差为2的等差数列B.首项为1的等差数列
C.公比为2的等比数列D.首项为1的等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.抛物线的焦点F是圆x2+y2-4x=0的圆心.
(1)求该抛物线的标准方程;
(2)直线l的斜率为2,且过抛物线的焦点,若l与抛物线、圆依次交于A,B,C,D,求|AB|+|CD|.

查看答案和解析>>

同步练习册答案