精英家教网 > 高中数学 > 题目详情
13.数列{an}中,如果an=2n,n∈N*,那么这个数列是(  )
A.公差为2的等差数列B.首项为1的等差数列
C.公比为2的等比数列D.首项为1的等比数列

分析 根据题意,由数列的通项公式可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{{2}^{n}}{{2}^{n-1}}$=2,结合等比数列的定义分析可得答案.

解答 解:根据题意,数列{an}中,an=2n
则有$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{{2}^{n}}{{2}^{n-1}}$=2,
则这个数列是公比为2的等比数列;
故选:C.

点评 本题考查等比数列的通项公式,关键是掌握等比数列的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图,正四面体S-ABC中,如果E,F分别是SC,AB的中点,那么异面直线EF与SA所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=x2-4x+b的最小值是0,不等式f(x)<4的解集为A.
(1)求集合A;
(2)设集合B={x||x-2|<a},若集合B是集合A的子集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足a1=3,an+1=an+3,数列{bn}的前n项和为Sn,且满足2Sn=1-bn
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z满足z•i=1+2i,则在复平面内,z所对应的点的坐标是(  )
A.(2,1)B.(1,2)C.(-1,2)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=lnx,且x0、x1、x2∈(0,+∞),下列命题:
①若x1<x2,则$\frac{1}{{x}_{2}}$>$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
②存在x0∈(x1,x2),(x1<x2),使得$\frac{1}{{x}_{0}}=\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
③若x1>1,x2>1,则$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1
④对任意的x1、x2,都有f($\frac{{x}_{1}+{x}_{2}}{2}$)$>\frac{f({x}_{1})+f({x}_{2})}{2}$
其中正确的是②③④(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=${2}^{sin(x-\frac{π}{4})}$的单调增区间为(  )
A.[-$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈z)B.[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈z)
C.[$\frac{3π}{4}$+kπ,$\frac{7π}{4}$+kπ](k∈z)D.[$\frac{3π}{4}$+2kπ,$\frac{7π}{4}$+2kπ](k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知$\sqrt{3}tanAtanB-\sqrt{3}=tanA+tanB$,记角A,B,C的对边依次为a,b,c.
(1)求角C的大小;
(2)若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量 x,y 满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$,则目标函数z=y-2x的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案