分析 (1)利用两角和与差的正切函数以及三角形内角求解即可.
(2)利用正弦定理转化求解表达式为$\frac{16}{3}+\frac{8}{3}sin(2A-\frac{π}{6})$,利用三角函数的最值求解即可.
解答 解:(1)依题意:$\frac{tanA+tanB}{1-tanAtanB}=-\sqrt{3}$,即$tan(A+B)=-\sqrt{3}$,又0<A+B<π,
∴$A+B=\frac{2π}{3}$,∴$C=π-A-B=\frac{π}{3}$;
(2)由三角形是锐角三角形可得$\left\{\begin{array}{l}A<\frac{π}{2}\\ B<\frac{π}{2}\end{array}\right.$,即$\frac{π}{6}<A<\frac{π}{2}$,
由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$得$a=\frac{c}{sinC}×sinA=\frac{4}{{\sqrt{3}}}sinA$,
$b=\frac{4}{{\sqrt{3}}}sinB=\frac{4}{{\sqrt{3}}}sin(\frac{2π}{3}-A)$,
${a^2}+{b^2}=\frac{16}{3}[{sin^2}A+{sin^2}(\frac{2}{3}π-A)]$
=$\frac{16}{3}-\frac{8}{3}[cos2A+cos(\frac{4π}{3}-2A)]$
=$\frac{16}{3}-\frac{8}{3}[cos2A+(-\frac{1}{2})cos2A+(-\frac{{\sqrt{3}}}{2})sin2A]$
=$\frac{16}{3}-\frac{8}{3}(\frac{1}{2}cos2A-\frac{{\sqrt{3}}}{2}sin2A)$
=$\frac{16}{3}+\frac{8}{3}sin(2A-\frac{π}{6})$,
∵$\frac{π}{6}<A<\frac{π}{2}$,∴$\frac{π}{6}<2A-\frac{π}{6}<\frac{5π}{6}$,
∴$\frac{1}{2}<sin(2A-\frac{π}{6})≤1$即$\frac{20}{3}<{a^2}+{b^2}≤8$.
点评 本题考查正弦定理以及两角和与差的三角函数的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\hat b$叫做回归系数 | |
| B. | 当$\hat b$>0,x每增加一个单位,y平均增加$\hat b$个单位 | |
| C. | 回归直线必经过点$(\overline x,\overline y)$ | |
| D. | $\hat a$叫做回归系数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 公差为2的等差数列 | B. | 首项为1的等差数列 | ||
| C. | 公比为2的等比数列 | D. | 首项为1的等比数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 年份代号x | 1 | 2 | 3 | 4 | 5 |
| 年求学花销y | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 只有圆才有渐开线 | |
| B. | 渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 | |
| C. | 正方形也可以有渐开线 | |
| D. | 对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com