10£®ºù«µºÊÐij¸ßÖнøÐÐÒ»Ïîµ÷²é£º2012ÄêÖÁ2016Ä걾УѧÉúÈ˾ùÄêÇóѧ»¨Ïúy£¨µ¥Î»£ºÍòÔª£©µÄÊý¾ÝÈç±í£º
Äê·Ý20122013201420152016
Äê·Ý´úºÅx12345
ÄêÇóѧ»¨Ïúy3.23.53.84.64.9
£¨1£©Çóy¹ØÓÚxµÄÏßÐԻعéÖ±Ïß·½³Ì£»
£¨2£©ÀûÓã¨1£©ÖеĻعéÖ±Ïß·½³Ì£¬·ÖÎö2012ÄêÖÁ2016Ä걾УѧÉúÈ˾ùÄêÇóѧ»¨ÏúµÄ±ä»¯Çé¿ö£¬²¢Ô¤²â¸ÃµØÇø2017Ä걾УѧÉúÈ˾ùÄêÇóѧ»¨ÏúÇé¿ö£®
¸½£º»Ø¹éÖ±ÏßµÄбÂʺͽؾàµÄ×îС¶þ³Ë·¨¹À¼Æ¹«Ê½·Ö±ðΪ£º
$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{£¨x}_{i}-\overline{x}£©{£¨y}_{i}-\overline{y}£©}{{\sum_{i=1}^{n}{£¨x}_{i}-\overline{x}£©}^{2}}=\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\overline{bx}}\end{array}\right.$£®

·ÖÎö £¨1£©ÓÉÌâÒâ¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö$\stackrel{¡Ä}{b}$¡¢$\stackrel{¡Ä}{a}$£¬Ð´³ö»Ø¹éÖ±Ïß·½³Ì£»
£¨2£©¸ù¾Ý£¨1£©µÄ»Ø¹éÖ±Ïß·½³ÌÖÐ$\stackrel{¡Ä}{b}$µÄÖµ£¬µÃ³ö±¾Ð£Ñ§ÉúÈ˾ùÄêÇóѧ»¨ÏúÇé¿ö£¬
ÔÙ¼ÆËãx=6ʱ$\stackrel{¡Ä}{y}$µÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬¼ÆËã$\overline{x}$=$\frac{1}{5}$¡Á£¨1+2+3+4+5£©=3£¬
$\overline{y}$=$\frac{1}{5}$¡Á£¨3.2+3.5+3.8+4.6+4.9£©=4£¬
$\sum_{i=1}^{5}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©=£¨-2£©¡Á£¨-0.8£©+£¨-1£©¡Á£¨-0.5£©+0¡Á£¨-0.2£©+1¡Á0.6+2¡Á0.9=4.5£¬
$\sum_{i=1}^{5}$${{£¨x}_{i}-\overline{x}£©}^{2}$=£¨-2£©2+£¨-1£©2+02+12+22=10£¬
¡à$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{5}{£¨x}_{i}-\overline{x}£©{£¨y}_{i}-\overline{y}£©}{{\sum_{i=1}^{5}{£¨x}_{i}-\overline{x}£©}^{2}}$=$\frac{4.5}{10}$=0.45£¬
$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=4-0.45¡Á3=2.65£¬
¡ày¹ØÓÚxµÄÏßÐԻعéÖ±Ïß·½³ÌΪ$\stackrel{¡Ä}{y}$=0.45x+2.65£»
£¨2£©¸ù¾Ý£¨1£©µÄ»Ø¹éÖ±Ïß·½³ÌÖÐ$\stackrel{¡Ä}{b}$=0.45£¾0£¬
¡à2012ÄêÖÁ2016Ä걾УѧÉúÈ˾ùÄêÇóѧ»¨ÏúÖðÄêÔö¼Ó£¬Æ½¾ùÿÄêÔö¼Ó0.45ÍòÔª£»
µ±x=6ʱ£¬$\stackrel{¡Ä}{y}$=0.45¡Á6+2.65=5.35£¬
¡àÔ¤²â¸ÃµØÇø2017Ä걾УѧÉúÈ˾ùÄêÇóѧ»¨ÏúΪ5.35ÍòÔª£®

µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄÇó·¨ÓëÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚº¯Êýf£¨x£©=$\frac{1}{2}$x2+lnxµÄËùÓÐÇÐÏßÖУ¬Ð±ÂÊ×îСµÄÇÐÏß·½³ÌΪ4x-2y-3=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=3£¬an+1=an+3£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ã2Sn=1-bn£®
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©Éècn=$\frac{{a}_{n}}{{b}_{n}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®É躯Êýf£¨x£©=lnx£¬ÇÒx0¡¢x1¡¢x2¡Ê£¨0£¬+¡Þ£©£¬ÏÂÁÐÃüÌ⣺
¢ÙÈôx1£¼x2£¬Ôò$\frac{1}{{x}_{2}}$£¾$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$
¢Ú´æÔÚx0¡Ê£¨x1£¬x2£©£¬£¨x1£¼x2£©£¬Ê¹µÃ$\frac{1}{{x}_{0}}=\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$
¢ÛÈôx1£¾1£¬x2£¾1£¬Ôò$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼1
¢Ü¶ÔÈÎÒâµÄx1¡¢x2£¬¶¼ÓÐf£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©$£¾\frac{f£¨{x}_{1}£©+f£¨{x}_{2}£©}{2}$
ÆäÖÐÕýÈ·µÄÊǢڢۢܣ¨°ÑÄãÈÏΪÕýÈ·½áÂÛµÄÐòºÅ¶¼ÌîÉÏ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýf£¨x£©=${2}^{sin£¨x-\frac{¦Ð}{4}£©}$µÄµ¥µ÷ÔöÇø¼äΪ£¨¡¡¡¡£©
A£®[-$\frac{¦Ð}{4}$+k¦Ð£¬$\frac{3¦Ð}{4}$+k¦Ð]£¨k¡Êz£©B£®[-$\frac{¦Ð}{4}$+2k¦Ð£¬$\frac{3¦Ð}{4}$+2k¦Ð]£¨k¡Êz£©
C£®[$\frac{3¦Ð}{4}$+k¦Ð£¬$\frac{7¦Ð}{4}$+k¦Ð]£¨k¡Êz£©D£®[$\frac{3¦Ð}{4}$+2k¦Ð£¬$\frac{7¦Ð}{4}$+2k¦Ð]£¨k¡Êz£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÉÈÐÎÖܳ¤Îª40cm£¬Ãæ»ýΪ100cm2£¬ÔòËüµÄ°ë¾¶ºÍÔ²ÐĽǷֱðΪ10cmºÍ2rad£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚ¡÷ABCÖУ¬ÒÑÖª$\sqrt{3}tanAtanB-\sqrt{3}=tanA+tanB$£¬¼Ç½ÇA£¬B£¬CµÄ¶Ô±ßÒÀ´ÎΪa£¬b£¬c£®
£¨1£©Çó½ÇCµÄ´óС£»
£¨2£©Èôc=2£¬ÇÒ¡÷ABCÊÇÈñ½ÇÈý½ÇÐΣ¬Çóa2+b2µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®£¨1£©Éèz=$\frac{{£¨{1-4i}£©£¨{1+i}£©+2+4i}}{3+4i}$£¬Çó|z|£®
£¨2£©z¡ÊC£¬½â·½³Ìz•$\overline z-2zi=1+2\sqrt{2}$i£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ä³Ð£´Ó¸ßÒ»Äê¼¶Ëæ»ú³éÈ¡ÁË20ÃûѧÉúµÚһѧÆÚµÄÊýѧѧÆÚ×ۺϳɼ¨ºÍÎïÀíѧÆÚ×ۺϳɼ¨£¬ÁбíÈçÏ£º
 Ñ§ÉúÐòºÅ 1 3 710 
 ÊýѧѧÆÚ×ۺϳɼ¨ 9692  91 9181  76 8279 90 93 
 ÎïÀíѧÆÚ×ۺϳɼ¨91  9490  9290  78 9171 78  84
 Ñ§ÉúÐòºÅ 1112  1314 15  16 1718 19 20 
  ÊýѧѧÆÚ×ۺϳɼ¨68  7279 70 64 61 63  6653 59 
 ÎïÀíѧÆÚ×ۺϳɼ¨ 79 7862  7262 60 68  7256 54 
¹æ¶¨£º×ۺϳɼ¨²»µÍÓÚ90·ÖÕßΪÓÅÐ㣬µÍÓÚ90·ÖΪ²»ÓÅÐ㣮
£¨¢ñ£©¶ÔÓÅÐ㸳·Ö2£¬¶Ô²»ÓÅÐ㸳·Ö1£¬´ÓÕâ20ÃûѧÉúÖÐËæ»ú³éÈ¡2ÃûѧÉú£¬ÈôÓæαíʾÕâ2ÃûѧÉúÁ½¿Æ¸³·ÖµÄºÍ£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨¢ò£©¸ù¾ÝÕâ´Î³é²éÊý¾Ý£¬Áгö2¡Á2ÁÐÁª±í£¬ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.025µÄǰÌáÏÂÈÏΪÎïÀí³É¼¨ÓëÊýѧ³É¼¨Óйأ¿
¸½£º${K}^{2}=\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
 P£¨K2¡Ýk0£©0.50  0.400.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸