精英家教网 > 高中数学 > 题目详情
7.设i为虚数单位,复数z=1-i,则$\frac{2}{z}$+z=(  )
A.1B.2C.-iD.2i

分析 把z=1-i代入$\frac{2}{z}$+z,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵z=1-i,
∴$\frac{2}{z}$+z=$\frac{2}{1-i}+(1-i)=\frac{2(1+i)}{(1-i)(1+i)}+(1-i)=1+i+1-i=2$.
故选:B.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如表提供了某厂节能降耗改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程$\widehat{y}$=0.7x+0.35,则下列结论错误的是(  )
 x 5
2.5 4.5 
A.线性回归直线一定过点(4.5,3.5)
B.产品的生产能耗与产量呈正相关
C.t的取值必定是3.5
D.A产品每多生产1吨,则相应的生产能耗约增加0.7吨

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=lnx,且x0、x1、x2∈(0,+∞),下列命题:
①若x1<x2,则$\frac{1}{{x}_{2}}$>$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
②存在x0∈(x1,x2),(x1<x2),使得$\frac{1}{{x}_{0}}=\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
③若x1>1,x2>1,则$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1
④对任意的x1、x2,都有f($\frac{{x}_{1}+{x}_{2}}{2}$)$>\frac{f({x}_{1})+f({x}_{2})}{2}$
其中正确的是②③④(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知扇形周长为40cm,面积为100cm2,则它的半径和圆心角分别为10cm和2rad.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知$\sqrt{3}tanAtanB-\sqrt{3}=tanA+tanB$,记角A,B,C的对边依次为a,b,c.
(1)求角C的大小;
(2)若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=-x3+2x+3在点(1,4)处的切线的斜率为(  )
A.-1B.1C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)设z=$\frac{{({1-4i})({1+i})+2+4i}}{3+4i}$,求|z|.
(2)z∈C,解方程z•$\overline z-2zi=1+2\sqrt{2}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1+cos2x}{\sqrt{2}sin(\frac{π}{2}+x)}$+$\sqrt{6}$sinx
(Ⅰ)求函数y=f(x)的单调递增区间
(Ⅱ)求函数y=f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$,θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),则cos(2θ+$\frac{2π}{3}$)=(  )
A.$\frac{4+3\sqrt{3}}{10}$B.-$\frac{4+3\sqrt{3}}{10}$C.$\frac{3\sqrt{3}-4}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

同步练习册答案