精英家教网 > 高中数学 > 题目详情
12.曲线y=-x3+2x+3在点(1,4)处的切线的斜率为(  )
A.-1B.1C.-$\sqrt{3}$D.$\sqrt{3}$

分析 求出原函数的导函数,进一步求出函数在x=1时的导数值得答案.

解答 解:由y=-x3+2x+3,得y′=-3x2+2,
∴$y′{|}_{x=1}=-3×{1}^{2}+2=-1$.
即曲线y=-x3+2x+3在点(1,4)处的切线的斜率为-1.
故选:A.

点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知一袋有2个白球和4个黑球.
(1)采用不放回地从袋中摸球(每次摸一球),4次摸球,求恰好摸到2个黑球的概率;
(2)采用有放回从袋中摸球(每次摸一球),4次摸球,令 X 表示摸到黑球次数,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={x|0<x≤5,且x∈N*},在集合A中任取2个不同的数,则取出的2个数之差的绝对值不小于2的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f (x)=$\left\{\begin{array}{l}ln(4x+2)-5,x≥0\\ ln(2-4x)-5,x<0\end{array}\right.$,若关于 x 的不等式f(ax-2)>f(x-3)在[4,5]上有解,则实数a的取值范围是($\frac{4}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,复数z=1-i,则$\frac{2}{z}$+z=(  )
A.1B.2C.-iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准0〜3.5,用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图.
(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(2)用样本估计总体,如果希望80%的居民每月的用水量不超出标准0〜3.5,则月均用水量的最低标准定为多少吨,请说明理由;
(3)从频率分布直方图中估计该100位居民月均用水量的平均数(同一组中的数据用该区间的中点值代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(x-a)|x|是定义在R上的奇函数,其中a∈R.
(1)求a的值;
(2)若不等式mx2+3m<f(x)对任意x∈[-3,3]成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,已知点A(0,-2),B(0,4),动点P(x,y)满足$\overrightarrow{PA}$•$\overrightarrow{PB}$-y2+8=0.
(1)求动点P的轨迹方程;
(2)设(1)中所求的轨迹与直线y=x+2交于C、D两点,求证:OC⊥OD(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$cos2x-2sinxcosx-$\sqrt{3}$sin2x.
(1)求函数f(x)的最小正周期及对称轴;
(2)求函数f(x)在区间[0,$\frac{π}{2}$]上的最小值及所对应的x值.

查看答案和解析>>

同步练习册答案