精英家教网 > 高中数学 > 题目详情
17.若sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$,θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),则cos(2θ+$\frac{2π}{3}$)=(  )
A.$\frac{4+3\sqrt{3}}{10}$B.-$\frac{4+3\sqrt{3}}{10}$C.$\frac{3\sqrt{3}-4}{10}$D.$\frac{4-3\sqrt{3}}{10}$

分析 利用同角三角函数的基本关系求得 tan(θ-$\frac{π}{4}$)的值,可得tanθ的值,再利用二倍角公式求得sin2θ、cos2θ的值,利用两角和差的三角公式求得cos(2θ+$\frac{2π}{3}$)的值.

解答 解:∵sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$,θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),∴θ-$\frac{π}{4}$∈( $\frac{π}{2}$,π),∴cos(θ-$\frac{π}{4}$)=-$\sqrt{{1-sin}^{2}(θ-\frac{π}{4})}$=-$\frac{2\sqrt{5}}{5}$,
∴tan(θ-$\frac{π}{4}$)=$\frac{sin(θ-\frac{π}{4})}{cos(θ-\frac{π}{4})}$=-$\frac{1}{2}$=$\frac{tanθ-1}{tanθ+1}$,∴tanθ=$\frac{1}{3}$,
∴sin2θ=$\frac{2sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ}{{tan}^{2}θ+1}$=$\frac{3}{5}$,cos2θ=$\frac{{cos}^{2}θ{-sin}^{2}θ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{1{-tan}^{2}θ}{{tan}^{2}θ+1}$=$\frac{4}{5}$,
 则cos(2θ+$\frac{2π}{3}$)=-$\frac{1}{2}$cos2θ-$\frac{\sqrt{3}}{2}$sin2θ=-$\frac{1}{2}$•$\frac{4}{5}$-$\frac{\sqrt{3}}{2}$•$\frac{3}{5}$=-$\frac{4+3\sqrt{3}}{10}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系,二倍角公式,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,复数z=1-i,则$\frac{2}{z}$+z=(  )
A.1B.2C.-iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若ξ~B(n,p),且E(ξ)=3,D(ξ)=$\frac{3}{2}$,则P(ξ=1)的值为 (  )
A.$\frac{3}{2}$B.$\frac{1}{4}$C.$\frac{1}{32}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等比数列{an}的前n项和Sn=$\frac{1}{{3}^{n}}$+a,求该数列各项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=2,左右焦点分别为F1、F2,右顶点为A,若|F1F2|=4.
(1)求双曲线的标准方程;
(2)若P是双曲线上的任意一点,求$\overrightarrow{P{F}_{1}}$$•\overrightarrow{PA}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$cos2x-2sinxcosx-$\sqrt{3}$sin2x.
(1)求函数f(x)的最小正周期及对称轴;
(2)求函数f(x)在区间[0,$\frac{π}{2}$]上的最小值及所对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在空间直角坐标系中,已知点A(1,1,1),B(1,0,1),则线段AB的长度为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数a>0,且a≠1,函数f(x)=loga|x|在(-∞,0)上是减函数,又g(x)=ax+$\frac{1}{{a}^{x}}$,则下列选项正确的(  )
A.g(-2)<g(1)<g(3)B.g(1)<g(-2)<g(3)C.g(3)<g(-2)<g(1)D.g(-2)<g(3)<g(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{cosx-1}{\sqrt{3-2\sqrt{2}sin(x+\frac{π}{4})}}$(x∈[0,2π)),则f(x)的值域是(  )
A.[-$\frac{\sqrt{3}}{3}$,0]B.[-1,1]C.[-1,0]D.[-$\sqrt{2}$,1]

查看答案和解析>>

同步练习册答案