精英家教网 > 高中数学 > 题目详情
8.若ξ~B(n,p),且E(ξ)=3,D(ξ)=$\frac{3}{2}$,则P(ξ=1)的值为 (  )
A.$\frac{3}{2}$B.$\frac{1}{4}$C.$\frac{1}{32}$D.$\frac{1}{16}$

分析 由随机变量ξ~B(n,p),列出方程组np=3,且np(1-p)=$\frac{3}{2}$求出n、p的值,
再利用n次独立重复实验恰有k次发生的概率公式计算即可.

解答 解:随机变量ξ~B(n,p)且E(ξ)=3,D(ξ)=$\frac{3}{2}$,
∴np=3,且np(1-p)=$\frac{3}{2}$,
解得n=8,p=$\frac{1}{2}$;
∴P(ξ=1)=C81($\frac{1}{2}$)(1-$\frac{1}{2}$)7=$\frac{1}{32}$.
故选:C.

点评 本题考查了n次独立重复实验恰有k次发生的概率计算问题,也考查了均值与方差的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=lnx,且x0、x1、x2∈(0,+∞),下列命题:
①若x1<x2,则$\frac{1}{{x}_{2}}$>$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
②存在x0∈(x1,x2),(x1<x2),使得$\frac{1}{{x}_{0}}=\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
③若x1>1,x2>1,则$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1
④对任意的x1、x2,都有f($\frac{{x}_{1}+{x}_{2}}{2}$)$>\frac{f({x}_{1})+f({x}_{2})}{2}$
其中正确的是②③④(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)设z=$\frac{{({1-4i})({1+i})+2+4i}}{3+4i}$,求|z|.
(2)z∈C,解方程z•$\overline z-2zi=1+2\sqrt{2}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1+cos2x}{\sqrt{2}sin(\frac{π}{2}+x)}$+$\sqrt{6}$sinx
(Ⅰ)求函数y=f(x)的单调递增区间
(Ⅱ)求函数y=f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量 x,y 满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$,则目标函数z=y-2x的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={1,2,3,4},B={1,4,5,6},则A∩B=(  )
A.{1}B.{1,2}C.{1,4}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校从高一年级随机抽取了20名学生第一学期的数学学期综合成绩和物理学期综合成绩,列表如下:
 学生序号 1 3 710 
 数学学期综合成绩 9692  91 9181  76 8279 90 93 
 物理学期综合成绩91  9490  9290  78 9171 78  84
 学生序号 1112  1314 15  16 1718 19 20 
  数学学期综合成绩68  7279 70 64 61 63  6653 59 
 物理学期综合成绩 79 7862  7262 60 68  7256 54 
规定:综合成绩不低于90分者为优秀,低于90分为不优秀.
(Ⅰ)对优秀赋分2,对不优秀赋分1,从这20名学生中随机抽取2名学生,若用ξ表示这2名学生两科赋分的和,求ξ的分布列和数学期望;
(Ⅱ)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关?
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(K2≥k00.50  0.400.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$,θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),则cos(2θ+$\frac{2π}{3}$)=(  )
A.$\frac{4+3\sqrt{3}}{10}$B.-$\frac{4+3\sqrt{3}}{10}$C.$\frac{3\sqrt{3}-4}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,7),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{19\sqrt{2}}{10}$.

查看答案和解析>>

同步练习册答案