精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{1+cos2x}{\sqrt{2}sin(\frac{π}{2}+x)}$+$\sqrt{6}$sinx
(Ⅰ)求函数y=f(x)的单调递增区间
(Ⅱ)求函数y=f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

分析 (Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性求得函数y=f(x)的单调递增区间.
(Ⅱ)利用正弦函数的定义域和值域,求得函数y=f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

解答 解:(Ⅰ)∵函数y=f(x)=$\frac{1+cos2x}{\sqrt{2}sin(\frac{π}{2}+x)}$+$\sqrt{6}$sinx
=$\frac{{2cos}^{2}x}{\sqrt{2}•cosx}$+$\sqrt{6}$sinx=$\sqrt{2}$cosx+$\sqrt{6}$sinx=2$\sqrt{2}$sin(x+$\frac{π}{6}$),
故函数的定义域为{x|x≠2kπ±$\frac{π}{2}$},k∈Z.
令2kπ-$\frac{π}{2}$<x+$\frac{π}{6}$<2kπ+$\frac{π}{2}$,求得2kπ-$\frac{2π}{3}$<x<2kπ+$\frac{π}{3}$,
可得函数f(x)的增区间为(2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$ ),k∈Z.
(Ⅱ)在区间[0,$\frac{π}{2}$]上,x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],
故当x+$\frac{π}{6}$=$\frac{π}{2}$时,函数f(x)取得最大值为2$\sqrt{2}$,
当x+$\frac{π}{6}$=$\frac{π}{6}$时,函数f(x)取得最小值为$\sqrt{2}$.

点评 本题主要考查三角恒等变换,正弦函数的单调性,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,复数z=1-i,则$\frac{2}{z}$+z=(  )
A.1B.2C.-iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(x-a)|x|是定义在R上的奇函数,其中a∈R.
(1)求a的值;
(2)若不等式mx2+3m<f(x)对任意x∈[-3,3]成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.关于渐开线和摆线的叙述,正确的是(  )
A.只有圆才有渐开线
B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形
C.正方形也可以有渐开线
D.对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,已知点A(0,-2),B(0,4),动点P(x,y)满足$\overrightarrow{PA}$•$\overrightarrow{PB}$-y2+8=0.
(1)求动点P的轨迹方程;
(2)设(1)中所求的轨迹与直线y=x+2交于C、D两点,求证:OC⊥OD(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若ξ~B(n,p),且E(ξ)=3,D(ξ)=$\frac{3}{2}$,则P(ξ=1)的值为 (  )
A.$\frac{3}{2}$B.$\frac{1}{4}$C.$\frac{1}{32}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等比数列{an}的前n项和Sn=$\frac{1}{{3}^{n}}$+a,求该数列各项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数a>0,且a≠1,函数f(x)=loga|x|在(-∞,0)上是减函数,又g(x)=ax+$\frac{1}{{a}^{x}}$,则下列选项正确的(  )
A.g(-2)<g(1)<g(3)B.g(1)<g(-2)<g(3)C.g(3)<g(-2)<g(1)D.g(-2)<g(3)<g(1)

查看答案和解析>>

同步练习册答案