精英家教网 > 高中数学 > 题目详情
6.已知实数a>0,且a≠1,函数f(x)=loga|x|在(-∞,0)上是减函数,又g(x)=ax+$\frac{1}{{a}^{x}}$,则下列选项正确的(  )
A.g(-2)<g(1)<g(3)B.g(1)<g(-2)<g(3)C.g(3)<g(-2)<g(1)D.g(-2)<g(3)<g(1)

分析 根据题意,由函数f(x)在(-∞,0)上的解析式,结合其在(-∞,0)上是减函数,分析可得a>1,对于g(x),分析可得为偶函数且函数在[0,+∞)上单调递增,据此分析可得答案.

解答 解:根据题意,当x∈(-∞,0)时,f(x)=loga|x|=loga(-x),
若函数f(x)=loga|x|在(-∞,0)上是减函数,即loga(-x)在在(-∞,0)上是减函数,
则有a>1,
又g(x)=ax+$\frac{1}{{a}^{x}}$,有g(-x)=a-x+$\frac{1}{{a}^{-x}}$=ax+$\frac{1}{{a}^{x}}$=g(x),即g(x)=g(-x),则函数g(x)为偶函数,
则有g(-2)=g(2),
当x>0时,g′(x)=axlna-$\frac{1}{{a}^{x}}$lna=lna(ax-$\frac{1}{{a}^{x}}$)>0,则函数g(x)在(0,+∞)为增函数,
则g(1)<g(2)=g(-2)<g(3);
故选:B.

点评 本题考查的知识点是复合函数单调,其中利用复合函数的单调性性质,确定底数a的取值范围是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1+cos2x}{\sqrt{2}sin(\frac{π}{2}+x)}$+$\sqrt{6}$sinx
(Ⅰ)求函数y=f(x)的单调递增区间
(Ⅱ)求函数y=f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$,θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),则cos(2θ+$\frac{2π}{3}$)=(  )
A.$\frac{4+3\sqrt{3}}{10}$B.-$\frac{4+3\sqrt{3}}{10}$C.$\frac{3\sqrt{3}-4}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.现有5本不同的书,其中有2本数学书,将这5本书排成一排,则数学书不能相邻且又不同时排在两边的排法有60种;将这5本书分给3个同学,每人至少得1本,则所有不同的分法有150种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}为等比数列,且4a1,2a2,a3成等差数列,若a1=1,则a10=512.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an}的前n项和为Sn,且$\frac{8}{{a}_{1}}$$+\frac{6}{{a}_{2}}$=$\frac{5}{{a}_{3}}$>0,S6=$\frac{63}{32}$
(1)求数列{an}的通项公式
(2)若bn=-log2an,cn=anbn,求数列[cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,7),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{19\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将y=2x的图象关于直线y=x对称后,再向右平行移动一个单位所得图象表示的函数的解析式是y=log2(x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设A={x|x2+4x≤0},B={x|x2+2(a+1)x+a2-1<0},其中x∈R,如果A∩B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案