精英家教网 > 高中数学 > 题目详情
16.设A={x|x2+4x≤0},B={x|x2+2(a+1)x+a2-1<0},其中x∈R,如果A∩B=B,求实数a的取值范围.

分析 由A与B的交集为B,得到B为A的子集,由A与B确定出a的范围即可.

解答 解:A={x|-4≤x≤0},又A∩B=B,
∴B⊆A,
(i)B=∅时,△=4(a+1)2-4(a2-1)≤0,得a≤-1;
(ii)B≠∅时,设f(x)=x2+2(a+1)x+a2-1,
令x2+2(a+1)x+a2-1=0的两根为x1,x2,且x1<x2
则有-4≤x1<x2≤0,即$\left\{{\begin{array}{l}{△>0}\\{f({-4})≥0}\\{f(0)≥0}\\{-4≤-({a+1})≤0}\end{array}}\right.$,
解得:a=1,
综上,a的范围是a≤-1或a=1.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知实数a>0,且a≠1,函数f(x)=loga|x|在(-∞,0)上是减函数,又g(x)=ax+$\frac{1}{{a}^{x}}$,则下列选项正确的(  )
A.g(-2)<g(1)<g(3)B.g(1)<g(-2)<g(3)C.g(3)<g(-2)<g(1)D.g(-2)<g(3)<g(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{cosx-1}{\sqrt{3-2\sqrt{2}sin(x+\frac{π}{4})}}$(x∈[0,2π)),则f(x)的值域是(  )
A.[-$\frac{\sqrt{3}}{3}$,0]B.[-1,1]C.[-1,0]D.[-$\sqrt{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过正四面体ABCD的顶点A作一个形状为等腰三角形的截面,且使截面与底面BCD所成的角为75°,这样的截面有(  )
A.6个B.12个C.16个D.18个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.45°=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l的方向向量$\overrightarrow{α}$,平面α的法向量$\overrightarrow{μ}$,若$\overrightarrow{α}$=(1,1,1),$\overrightarrow{μ}$=(-1,0,1),则直线l与平面α的位置关系是(  )
A.垂直
B.平行
C.相交但不垂直
D.直线l在平面α内或直线l与平面α平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(1,t)到焦点的距离为2,曲线C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.
(Ⅰ)求线段OQ的长;
(Ⅱ)设不经过点P和Q的动直线l2:x=my+b交曲线C于点A和B,交l1于点E,若直线PA,PE,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线x2=2py(p>0)的焦点为F,其准线与双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1相交于A,B两点,若△ABF为等边三角形,则p的值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C1:x2+y2+6x=0关于直线l1:y=2x+1对称的圆为C
(1)求圆C的方程;
(2)过点(-1,0)作直线与圆C交于A,B两点,O是坐标原点,是否存在这样的直线,使得在平行四边形OASB中|$\overrightarrow{OS}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案