精英家教网 > 高中数学 > 题目详情
17.在数列{an}中,已知a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0,1).
(1)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(2)求数列{an}的通项公式;
(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.

分析 (1)an+1=(1+q)an-qan-1(n≥2,q≠0,1).a3=(1+q)a2-qa1=q+2.可得$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{{a}_{n+2}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$
=$\frac{(1+q){a}_{n+1}-q{a}_{n}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$=q,又b1=a2-a1,b2=a3-a2,可得$\frac{{b}_{2}}{{b}_{1}}$=q.即可证明.
(2)由(1)可得:bn=an+1-an=qn-1.(q≠1).n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1及其等比数列的求和公式即可得出.
(3)a3是a6与a9的等差中项,可得2a3=a6+a9,利用求和公式化为:q6+q3-2=0,解得q.另一方面,利用等比数列的求和公式证明:an+3+an+6-2an=0即可得出结论.

解答 (1)证明:∵an+1=(1+q)an-qan-1(n≥2,q≠0,1).
∴a3=(1+q)a2-qa1=q+2.
$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{{a}_{n+2}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$=$\frac{(1+q){a}_{n+1}-q{a}_{n}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$=q,
又b1=a2-a1=1,b2=a3-a2=q,∴$\frac{{b}_{2}}{{b}_{1}}$=q.
∴$\frac{{b}_{n+1}}{{b}_{n}}$=q≠0,n∈N*
∴{bn}是等比数列,首项为1,公比为q.
(2)解:由(1)可得:bn=an+1-an=qn-1.(q≠1).
∴n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=qn-2+qn-3+…+q+1+1
=$\frac{1-{q}^{n-1}}{1-q}$+1.(n=1时也成立).
∴an=$\frac{1-{q}^{n-1}}{1-q}$+1.
(3)证明:∵a3是a6与a9的等差中项,
∴2a3=a6+a9,∴$2×\frac{1-{q}^{2}}{1-q}$=$\frac{1-{q}^{5}}{1-q}$+$\frac{1-{q}^{8}}{1-q}$,
化为:q6+q3-2=0,解得q3=-2(q3=1舍去).
∴q=-$\root{3}{2}$.
另一方面:an+3+an+6-2an
=$\frac{1-{q}^{n+2}}{1-q}$+1+1+$\frac{1-{q}^{n+5}}{1-q}$-2×$\frac{1-{q}^{n-1}}{1-q}$-2
=$\frac{2{q}^{n-1}-{q}^{n+2}-{q}^{n+5}}{1-q}$
=$\frac{{q}^{n-1}(2-{q}^{3}-{q}^{6})}{1-q}$=0,
∴an+3+an+6=2an
对任意的n∈N*,an是an+3与an+6的等差中项.

点评 本题考查了等差数列与等比数列的定义通项公式及其求和公式、累加求和方法、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知a>0,b>0,a3+b3=2.证明:
(Ⅰ)a6+a5b+ab5+b6≥4;
(Ⅱ)(a+b)3≤8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z满足z•i=1+2i,则在复平面内,z所对应的点的坐标是(  )
A.(2,1)B.(1,2)C.(-1,2)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=${2}^{sin(x-\frac{π}{4})}$的单调增区间为(  )
A.[-$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈z)B.[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈z)
C.[$\frac{3π}{4}$+kπ,$\frac{7π}{4}$+kπ](k∈z)D.[$\frac{3π}{4}$+2kπ,$\frac{7π}{4}$+2kπ](k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(1,-2).若 $\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m=-$\frac{1}{2}$;若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数 m=2;若|$\overrightarrow{a}$|<|$\overrightarrow{b}$|,则实数m的取值范围是(-2,2),.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知$\sqrt{3}tanAtanB-\sqrt{3}=tanA+tanB$,记角A,B,C的对边依次为a,b,c.
(1)求角C的大小;
(2)若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知Sn是等差数列{an}的前n项和,且a1=1,S6=3S3,则S9=(  )
A.9B.15C.21D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式|x-1|+|x+1|≥|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|对任意实数a≠0恒成立,则实数x的取值范围是{x|x≤-2,或 x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点为F,过点F作平行于渐进线的一条直线交C于点P,交y轴于点Q,若|PQ|=2|PF|,则C的离心率为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案