精英家教网 > 高中数学 > 题目详情
7.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点为F,过点F作平行于渐进线的一条直线交C于点P,交y轴于点Q,若|PQ|=2|PF|,则C的离心率为$\sqrt{3}$.

分析 如图所示,设双曲线的右焦点为F.设PF平行于渐近线:y=$\frac{b}{a}$x,则直线PF的方程:y=$\frac{b}{a}$(x-c),与双曲线联立解得xP,根据|PQ|=2|PF|,即可得出.

解答 解:如图所示,设双曲线的右焦点为F.
设PF平行于渐近线:y=$\frac{b}{a}$x,则直线PF的方程:y=$\frac{b}{a}$(x-c),
联立$\left\{\begin{array}{l}{y=\frac{b}{a}(x-c)}\\{\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,化为:x=$\frac{{a}^{2}+{c}^{2}}{2c}$.
∵|PQ|=2|PF|,∴$\frac{{a}^{2}+{c}^{2}}{2c}$=2×$(c-\frac{{a}^{2}+{c}^{2}}{2c})$,
化为:c2=3a2
解得$\frac{c}{a}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了双曲线的标准方程及其性质、直线与双曲线相交、平行线的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在数列{an}中,已知a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0,1).
(1)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(2)求数列{an}的通项公式;
(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某畜牧站为了考查某种新型药物预防动物疾病的效果,利用小白鼠进行试验,得到如下丢失数据的2×2列联表
  患病 未患病 总计
 没服用药 20 30 50
 服用药 x y 50
 总计 M N 100
设从没服用药的小白鼠中任取两只,未患病的动物数为X,从服用药物的小白鼠中任取两只,未患病的动物数为Y,得到如下比例关系:P(X=0):P(Y=0)=38:9
(Ⅰ)求出2×2列联表中数据x,y,M,N的值
(Ⅱ)是否有99%的把握认为药物有效?并说明理由
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,当K2≥3.841时,有95%的把握认为A与B有关;K2≥6.635时,有99%的把握认为A与B有关.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,a3=3,S6=21.
(1)求{an}的通项公式;
(2)设bn=an+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设实数x,y满足$\left\{\begin{array}{l}{x+2y≤6}\\{2x+y≤6}\\{x≥0}\\{y≥0}\end{array}\right.$,则Z=max{2x+3y-1,x+2y+2}的取值范围是[2,9].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=2,左右焦点分别为F1、F2,右顶点为A,若|F1F2|=4.
(1)求双曲线的标准方程;
(2)若P是双曲线上的任意一点,求$\overrightarrow{P{F}_{1}}$$•\overrightarrow{PA}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,等边△ABC中,AB=2,M为△ABC内一动点,∠BMC=120°;
(Ⅰ)若BM=1,求CM;
(Ⅱ)若∠AMB=90°,求sin∠ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=xlnx,则f(x)在x=1处的切线方程是y=x-1,若存在x>0使得f(x)≤2x+m成立,则实数m的取值范围是[-e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,每个配件的成本不变,质量和技术含量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x2,记改进工艺后电子公司销售该配件的月平均利润是y(元)
(Ⅰ)写出y与x的函数关系式
(Ⅱ)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.

查看答案和解析>>

同步练习册答案