精英家教网 > 高中数学 > 题目详情
15.已知等差数列{an}的前n项和为Sn,a3=3,S6=21.
(1)求{an}的通项公式;
(2)设bn=an+2n,求数列{bn}的前n项和Tn

分析 (1)设公差为d,由已知可得:$\left\{\begin{array}{l}{{a}_{1}+2d=3}\\{6{a}_{1}+\frac{6×5}{2}d=21}\end{array}\right.$,解得a1,d.即可得出.
(2)bn=an+2n=n+2n.利用等差数列与等比数列的求和公式即可得出.

解答 解:(1)设公差为d,由已知可得:$\left\{\begin{array}{l}{{a}_{1}+2d=3}\\{6{a}_{1}+\frac{6×5}{2}d=21}\end{array}\right.$,解得a1=1,d=1.
∴an=1+(n-1)=n.
(2)bn=an+2n=n+2n
∴数列{bn}的前n项和Tn=(1+2+…+n)+(2+22+…+2n
=$\frac{n(n+1)}{2}$+$\frac{2({2}^{n}-1)}{2-1}$
=$\frac{{n}^{2}+n}{2}$+2n+1-2.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=${2}^{sin(x-\frac{π}{4})}$的单调增区间为(  )
A.[-$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈z)B.[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈z)
C.[$\frac{3π}{4}$+kπ,$\frac{7π}{4}$+kπ](k∈z)D.[$\frac{3π}{4}$+2kπ,$\frac{7π}{4}$+2kπ](k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式|x-1|+|x+1|≥|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|对任意实数a≠0恒成立,则实数x的取值范围是{x|x≤-2,或 x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量 x,y 满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$,则目标函数z=y-2x的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,圆心为C的圆的半径为r,弦AB的长度为2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值为(  )
A.rB.2rC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校从高一年级随机抽取了20名学生第一学期的数学学期综合成绩和物理学期综合成绩,列表如下:
 学生序号 1 3 710 
 数学学期综合成绩 9692  91 9181  76 8279 90 93 
 物理学期综合成绩91  9490  9290  78 9171 78  84
 学生序号 1112  1314 15  16 1718 19 20 
  数学学期综合成绩68  7279 70 64 61 63  6653 59 
 物理学期综合成绩 79 7862  7262 60 68  7256 54 
规定:综合成绩不低于90分者为优秀,低于90分为不优秀.
(Ⅰ)对优秀赋分2,对不优秀赋分1,从这20名学生中随机抽取2名学生,若用ξ表示这2名学生两科赋分的和,求ξ的分布列和数学期望;
(Ⅱ)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关?
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(K2≥k00.50  0.400.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点为F,过点F作平行于渐进线的一条直线交C于点P,交y轴于点Q,若|PQ|=2|PF|,则C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,$\overrightarrow{e}$为单位向量,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{e}$的最大值为$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合M={x|-1<x-1<1},N={x|x<2},则M∩N=(  )
A.(1,2)B.(0,2)C.(-12)D.(-1,1)

查看答案和解析>>

同步练习册答案