分析 (1)设公差为d,由已知可得:$\left\{\begin{array}{l}{{a}_{1}+2d=3}\\{6{a}_{1}+\frac{6×5}{2}d=21}\end{array}\right.$,解得a1,d.即可得出.
(2)bn=an+2n=n+2n.利用等差数列与等比数列的求和公式即可得出.
解答 解:(1)设公差为d,由已知可得:$\left\{\begin{array}{l}{{a}_{1}+2d=3}\\{6{a}_{1}+\frac{6×5}{2}d=21}\end{array}\right.$,解得a1=1,d=1.
∴an=1+(n-1)=n.
(2)bn=an+2n=n+2n.
∴数列{bn}的前n项和Tn=(1+2+…+n)+(2+22+…+2n)
=$\frac{n(n+1)}{2}$+$\frac{2({2}^{n}-1)}{2-1}$
=$\frac{{n}^{2}+n}{2}$+2n+1-2.
点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈z) | B. | [-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈z) | ||
| C. | [$\frac{3π}{4}$+kπ,$\frac{7π}{4}$+kπ](k∈z) | D. | [$\frac{3π}{4}$+2kπ,$\frac{7π}{4}$+2kπ](k∈z) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | r | B. | 2r | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数学学期综合成绩 | 96 | 92 | 91 | 91 | 81 | 76 | 82 | 79 | 90 | 93 |
| 物理学期综合成绩 | 91 | 94 | 90 | 92 | 90 | 78 | 91 | 71 | 78 | 84 |
| 学生序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学学期综合成绩 | 68 | 72 | 79 | 70 | 64 | 61 | 63 | 66 | 53 | 59 |
| 物理学期综合成绩 | 79 | 78 | 62 | 72 | 62 | 60 | 68 | 72 | 56 | 54 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com