分析 利用绝对值三角不等式求得|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|的最大值为4,可得|x-1|+|x+1|≥4,由此分类讨论,去掉绝对值,求得实数x的取值范围.
解答 解:由于|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|≤|$\frac{1}{a}$+1-($\frac{1}{a}$-3)|=4,即|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|的最大值为4,
而不等式|x-1|+|x+1|≥|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|对任意实数a≠0恒成立,
∴|x-1|+|x+1|≥4,∴$\left\{\begin{array}{l}{x<-1}\\{1-x-x-1≥4}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{-1≤x≤1}\\{1-x+x+1≥4}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>1}\\{x-1+x+1≥4}\end{array}\right.$③.
解①求得x≤-2,解②求得x∈∅,解③求得 x≥2,
故原不等式的解集为{x|x≤-2,或 x≥2},
故答案为:{x|x≤-2,或x≥2}.
点评 本题主要考查绝对值三角不等式的应用,绝对值不等式的解法,函数的恒成立问题,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}+\frac{1}{5}i$ | B. | $\frac{3}{5}-\frac{1}{5}i$ | C. | $\frac{1}{5}+\frac{3}{5}i$ | D. | $\frac{1}{5}-\frac{3}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 只有圆才有渐开线 | |
| B. | 渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 | |
| C. | 正方形也可以有渐开线 | |
| D. | 对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 患病 | 未患病 | 总计 | |
| 没服用药 | 20 | 30 | 50 |
| 服用药 | x | y | 50 |
| 总计 | M | N | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com