精英家教网 > 高中数学 > 题目详情
6.若不等式|x-1|+|x+1|≥|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|对任意实数a≠0恒成立,则实数x的取值范围是{x|x≤-2,或 x≥2}.

分析 利用绝对值三角不等式求得|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|的最大值为4,可得|x-1|+|x+1|≥4,由此分类讨论,去掉绝对值,求得实数x的取值范围.

解答 解:由于|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|≤|$\frac{1}{a}$+1-($\frac{1}{a}$-3)|=4,即|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|的最大值为4,
而不等式|x-1|+|x+1|≥|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|对任意实数a≠0恒成立,
∴|x-1|+|x+1|≥4,∴$\left\{\begin{array}{l}{x<-1}\\{1-x-x-1≥4}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{-1≤x≤1}\\{1-x+x+1≥4}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>1}\\{x-1+x+1≥4}\end{array}\right.$③.
解①求得x≤-2,解②求得x∈∅,解③求得 x≥2,
故原不等式的解集为{x|x≤-2,或 x≥2},
故答案为:{x|x≤-2,或x≥2}.

点评 本题主要考查绝对值三角不等式的应用,绝对值不等式的解法,函数的恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.复数z满足$\frac{z}{1+i}=zi+1$,则复数z的共轭复数为(  )
A.$\frac{3}{5}+\frac{1}{5}i$B.$\frac{3}{5}-\frac{1}{5}i$C.$\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在数列{an}中,已知a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0,1).
(1)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(2)求数列{an}的通项公式;
(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.抛物线的焦点F是圆x2+y2-4x=0的圆心.
(1)求该抛物线的标准方程;
(2)直线l的斜率为2,且过抛物线的焦点,若l与抛物线、圆依次交于A,B,C,D,求|AB|+|CD|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和为Sn,若点(n,Sn)(n∈N*)在函数f(x)=3x2-2x的图象上,则{an}的通项公式是an=6n-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.关于渐开线和摆线的叙述,正确的是(  )
A.只有圆才有渐开线
B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形
C.正方形也可以有渐开线
D.对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某畜牧站为了考查某种新型药物预防动物疾病的效果,利用小白鼠进行试验,得到如下丢失数据的2×2列联表
  患病 未患病 总计
 没服用药 20 30 50
 服用药 x y 50
 总计 M N 100
设从没服用药的小白鼠中任取两只,未患病的动物数为X,从服用药物的小白鼠中任取两只,未患病的动物数为Y,得到如下比例关系:P(X=0):P(Y=0)=38:9
(Ⅰ)求出2×2列联表中数据x,y,M,N的值
(Ⅱ)是否有99%的把握认为药物有效?并说明理由
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,当K2≥3.841时,有95%的把握认为A与B有关;K2≥6.635时,有99%的把握认为A与B有关.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,a3=3,S6=21.
(1)求{an}的通项公式;
(2)设bn=an+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=xlnx,则f(x)在x=1处的切线方程是y=x-1,若存在x>0使得f(x)≤2x+m成立,则实数m的取值范围是[-e,+∞).

查看答案和解析>>

同步练习册答案