精英家教网 > 高中数学 > 题目详情
15.将正整数排成如图,其中第i行第j列(按照从左到右的顺序)的那个数记为a(i,j),则数表中的2017应记为2017(81,45).

分析 本题考查的是归纳推理,解题思路为:分析各行数的排列规律,猜想前N行数的个数,从而进行求解

解答 解:前1行共有:1个数
前2行共有:1+3=4个数
前3行共有:1+3+5=9个数
前4行共有:1+3+5+7=16个数

由此猜想:前N行共有N2个数,
∵442=1936<2017,
452=2025>2017,
故2017应出现在第45行,
又由第45行的第一个数为1937,
故2017应为第81个数,
数表中的2017应记为 2017(81,45).
故答案为:2017(81,45).

点评 本题考查了合情推理的归纳推理;归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是(  )
A.2x-3y+5=0B.2x-3y+8=0C.3x+2y-1=0D.3x+2y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若等式(2x-1)2017=a0+a1x+a2x2+…+a2017x2017对于一切实数x都成立,则a0+$\frac{1}{2}a$1+$\frac{1}{3}$a2+…+$\frac{1}{2018}$a2017=(  )
A.$\frac{1}{4036}$B.$\frac{1}{2018}$C.$\frac{2}{2018}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,正四面体S-ABC中,如果E,F分别是SC,AB的中点,那么异面直线EF与SA所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}与[bn}满足an+1=3an,bn=bn+1-1,b6=a1=3,若(2λ-1)an>36bn,对一切n∈N*恒成立,则实数λ的取值范围是($\frac{13}{18}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在函数f(x)=$\frac{1}{2}$x2+lnx的所有切线中,斜率最小的切线方程为4x-2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a>0,b>0,a3+b3=2.证明:
(Ⅰ)a6+a5b+ab5+b6≥4;
(Ⅱ)(a+b)3≤8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=x2-4x+b的最小值是0,不等式f(x)<4的解集为A.
(1)求集合A;
(2)设集合B={x||x-2|<a},若集合B是集合A的子集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=${2}^{sin(x-\frac{π}{4})}$的单调增区间为(  )
A.[-$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈z)B.[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈z)
C.[$\frac{3π}{4}$+kπ,$\frac{7π}{4}$+kπ](k∈z)D.[$\frac{3π}{4}$+2kπ,$\frac{7π}{4}$+2kπ](k∈z)

查看答案和解析>>

同步练习册答案