精英家教网 > 高中数学 > 题目详情
20.下列四个命题中,正确的是(  )
A.若平面α∥平面β,直线m∥平面α,则m∥β
B.若平面α⊥平面γ,且平面β⊥平面γ,则α∥β
C.平面α⊥平面β,其α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β
D.直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α⊥β

分析 根据平面与平面平行的性质进行判定,以及直线与平面位置关系的定义进行判定即可.

解答 解:因为平面α∥平面β,而直线m∥平面α
则当m在平面β内,原命题成立,
若m不在平面β内,则m一定与平面β平行;A错.
对于B,以正方体过同一顶点的三个面为例,确定其中一个面是β,另外两个面分别是α、γ,
可得α⊥β且β⊥γ,但α与γ不平行,因此B是假命题;
对于C,平面α⊥平面β,其α∩β=l,点A∈α,A∉l,若AB⊥l,则由平面与平面垂直的性质定理可知:AB⊥β,C正确.
对于D.直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α与β平行或相交.D错误.
故选:C

点评 本题主要考查了面面平行的性质,以及空间中直线与平面之间的位置关系,同时考查了空间想象能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知平面α与平面β相交于直线n,且不垂直,直线m?β,且m与n相交,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是(  )
A.l∥m且l⊥αB.l⊥m且l⊥αC.l⊥m且l∥αD.l∥m且l∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x,y∈R+,且x+y=2
(Ⅰ)要使不等式$\frac{1}{x}$+$\frac{1}{y}$≥|a+2|-|a-1|恒成立,求实数a的取值范围
(Ⅱ)求证:x2+2y2$≥\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在数列{an}中,已知an≥2,a1=2,an+1+an-2=$\frac{1}{{a}_{n+1}-{a}_{n}}$,n∈N*
(1)求a2的值及数列{an}的通项公式;
(2)设k∈N,k≤$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{100}-1}$<k+1,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,且满足:a2+a4=14,S7=70.
(1)求数列{an}的通项公式;
(2)设Tn=2Sn-7n,求Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆x2+y2+ax-2y+1=0过点(1,2),则该圆的半径为1,过点(1,2)的切线方程为y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正方体ABCD-A1B1C1D1中,E、F分别是BC1,DC的中点.
(1)求直线DE与平面ABCD所成角的正切值;
(2)求证:AF⊥DE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“a+b>0”是“任意的x∈[0,1],ax+b>0恒成立”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“$\frac{{a}^{2}+{b}^{2}}{ab}$≤-2”是“a<0且b>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案