精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n),且mn=3.
(1)求直线A1N1与A2N2交点的轨迹M的方程;
(2)已知点G(1,0)和G′(-1,0),点P在轨迹M上运动,现以P为圆心,PG为半径作圆P,试探究是否存在一个以点G′(-1,0)为圆心的定圆,总与圆P内切?若存在,求出该定圆的方程;若不存在,请说明理由.
考点:直线和圆的方程的应用,轨迹方程
专题:综合题,直线与圆,圆锥曲线的定义、性质与方程
分析:(  )由直线方程的点斜式列出A1N1和A2N2的方程,联解并结合mn=3化简整理得
x2
4
+
y2
3
=1
,再由N1、N2不与原点重合,可得直线A1N1与A2N2交点的轨迹M的方程;
(2)由题意,点G(1,0)和G′(-1,0)为椭圆的焦点,则PG+PG′=4,从而PG′=4-PG,即可得出结论.
解答: 解:(1)依题意知直线A1N1的方程为:y=
m
2
(x+2)…①;
直线A2N2的方程为:y=-
n
2
(x-2)…②
设Q(x,y)是直线A1N1与A2N2交点,①、②相乘,得y2=-
mn
4
(x2-4)
由mn=3整理得:
x2
4
+
y2
3
=1

∵N1、N2不与原点重合,可得点A1(-2,0),A2(2,0)不在轨迹M上,
∴轨迹M的方程为:
x2
4
+
y2
3
=1
(x≠±2).
(2)由题意,点G(1,0)和G′(-1,0)为椭圆的焦点,则PG+PG′=4,
∴PG′=4-PG,
∴点G′(-1,0)为圆心,4为半径的定圆,总与圆P内切,
方程为(x+1)2+y2=16.
点评:本题着重考查了动点轨迹的求法、椭圆的标准方程与简单几何性质、圆与圆的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z满足(1-i)z=2,则z的模|z|等于(  )
A、1
B、
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

240°化成弧度制是(  )
A、
π
3
B、
3
C、
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+alnx的定义域是D,关于函数f(x)给出下列命题:
①对于任意a∈(0,+∞),函数f(x)是D上的减函数;
②对于任意a∈(-∞,+0),函数f(x)存在最小值;
③对于任意a∈(0,+∞),使得对于任意的x∈D,都有f(x)>0成立;
④对于任意a∈(-∞,+0),使得函数f(x)有两个零点.
其中正确命题的个数是(  )B.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,以为π最小正周期的偶函数,且在(0,
π
2
)内递增的是(  )
A、y=sin|x|
B、y=|sinx|
C、y=|cosx|
D、y=cos|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

若4sin2x-6sinx-cos2x+3cosx=0.求:
cos2x-sin2x
(1-cos2x)(1-tan2x)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得最小值m-1(m≠0).设函数f(x)=
g(x)
x

(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
6
,求m的值
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品有一等品、二等品、次品三个等级,其中一等品和二等品都是正品.现有6件该产品,从中随机抽取2件来进行检测.
(1)若6件产品中有一等品3件、二等品2件、次品1件.
①抽检的2件产品全是一等品的概率是多少?
②抽检的2件产品中恰有1件是二等品的概率是多少?
(2)如果抽检的2件产品中至多有1件是次品的概率不小于
4
5
,则6件产品中次品最多有多少件?

查看答案和解析>>

同步练习册答案