精英家教网 > 高中数学 > 题目详情
已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得最小值m-1(m≠0).设函数f(x)=
g(x)
x

(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
6
,求m的值
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.
考点:利用导数研究曲线上某点切线方程,二次函数的性质
专题:函数的性质及应用
分析:(1)先根据二次函数的顶点式设出函数g(x)的解析式,然后对其进行求导,根据g(x)的导函数的图象与直线y=2x平行求出a的值,进而可确定函数g(x)、f(x)的解析式,然后设出点P的坐标,根据两点间的距离公式表示出|PQ|,再由基本不等式表示其最小值即可.
(2)先根据(1)的内容得到函数y=f(x)-kx的解析式,即(1-k)x2+2x+m=0,然后先对二次项的系数等于0进行讨论,再当二次项的系数不等于0时,即为二次方程时根据方程的判别式进行讨论即可得到答案.
解答: 解:(1)依题可设g(x)=a(x+1)2+m-1,(a≠0),
则g′(x)=2a(x+1=2ax+2a,
又g′(x)的图象与直线y=2x平行,
∴2a=2,a=1,
∴g(x)=(x+1)2+m-1=x2+2x+m,f(x)=
g(x)
x
=x+
m
x
+2,
设P(x0,y0),
则|PQ|2=
x
2
0
+(y0+2)2=
x
2
0
+(x0+
m
x0
2=2
x
2
0
+
m2
x
2
0
+2m≥2
2m2
+2m=2
2
|m|+2m,
当且仅当2
x
2
0
=
m2
x
2
0
时,|PQ|2取得最小值,即|PQ|取得最小值
6

当m>0时,
(2
2
+2)m
=
6
,解得m=3(
2
-1);
当m<0时,
-(2
2
+2)m
=
6
,解得m=-3(
2
-1);
(2)由y=f(x)-kx=(1-k)x+
m
x
+2=0(x≠0),
得(1-k)x2+2x+m=0,(*)
当k=1时,方程(*)有一解x=-
m
2
,函数y=f(x)-kx有一零点x=-
m
2

当k≠1时,方程(*)有二解,∴△=4-4m(1-k)>0,
若m>0,k>1-
1
m

函数y=f(x)-kx有两个零点x=
-2±
4-4m(1-k)
2(1-k)
,即x=
1-m(1-k)
k-1

若m<0,k<1-
1
m

函数y=f(x)-kx有两个零点x=
-2±
4-4m(1-k)
2(1-k)
,即x=
1-m(1-k)
k-1

当k≠1时,方程(*)有一解,
∴△4-4m(1-k)=0,k=1-
1
m

函数y=f(x)-kx有一零点x=
1
k-1
=-m;
综上,当k=1时,函数y=f(x)-kx有一零点x=-
m
2

当k>1-
1
m
(m>0),或k<1-
1
m
(m<0)时,函数y=f(x)-kx有两个零点x=
1-m(1-k)
k-1

当k=1-
1
m
时,函数y=f(x)-kx有一零点x=
1
k-1
=-m.
点评:本题主要考查二次函数的顶点式、导数的几何意义、函数零点与方程根的关系.主要考查基础知识的综合运用和学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)为可导函数,且
lim
x→0
f(1-x)-f(1)
2x
=-1,则曲线y=f(x)在(1,f(1))处切线的斜率为(  )
A、2B、-2C、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n),且mn=3.
(1)求直线A1N1与A2N2交点的轨迹M的方程;
(2)已知点G(1,0)和G′(-1,0),点P在轨迹M上运动,现以P为圆心,PG为半径作圆P,试探究是否存在一个以点G′(-1,0)为圆心的定圆,总与圆P内切?若存在,求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f0(x)=xex,f1(x)=f0′(x),f2(x)=f1′(x),…fn(x)=fn-1′(x),n∈N*
(1)请写出fn(x)的表达式(不需要证明),并求fn(x)的极小值;
(2)设gn(x)=-x2-2(n+1)-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,证明:a-b≥e-4
(3)设φ(x)=x2+a|ln[f0(x)]-x-1|,(a>0),若φ(x)≥
3
2
a,x∈[1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°PA⊥平面,PA=4,AD=2,AB=2
3
,BC=6.
(Ⅰ)求证:BD⊥平面PAC
(Ⅱ)求二面角P-BD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a5=7,a8=56,求等比数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
c
满足
a
+
b
+
c
=0,向量
a
b
的夹角为120°,且|
b
|=2|
a
|,求向量
a
c
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C分别为△ABC的三边a、b、c所对的角,向量
m
=(sinA,sinB),
n
=(cosB,cosA),且
m
n
=sin2C.
(1)求角C的大小;
(2)若a,c,b成等差数列,且
CA
•(
AB
-
AC
)=18,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件,求相应的等差数列{an}的有关未知数:
(1)a1=20,an=54,Sn=999,求d及n;
(2)d=2,n=15,an=-10,求a1及Sn

查看答案和解析>>

同步练习册答案