精英家教网 > 高中数学 > 题目详情
根据下列条件,求相应的等差数列{an}的有关未知数:
(1)a1=20,an=54,Sn=999,求d及n;
(2)d=2,n=15,an=-10,求a1及Sn
考点:等差数列的前n项和,等差数列的通项公式
专题:等差数列与等比数列
分析:利用等差数列的通项公式和前n项和公式直接求解.
解答: 解:(1)等差数列{an}中,
∵a1=20,an=54,Sn=999,
n
2
(20+54)=999
20+(n-1)d=54

解得n=27,d=
17
13

(2)等差数列{an}中,
∵d=2,n=15,an=-10,
∴-10=a1+14×2,解得a1=-38.
∴Sn=
15
2
(-38-10)=-360.
点评:本题考查等差数列的项数、公差、首项、前n项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得最小值m-1(m≠0).设函数f(x)=
g(x)
x

(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
6
,求m的值
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品有一等品、二等品、次品三个等级,其中一等品和二等品都是正品.现有6件该产品,从中随机抽取2件来进行检测.
(1)若6件产品中有一等品3件、二等品2件、次品1件.
①抽检的2件产品全是一等品的概率是多少?
②抽检的2件产品中恰有1件是二等品的概率是多少?
(2)如果抽检的2件产品中至多有1件是次品的概率不小于
4
5
,则6件产品中次品最多有多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+1),g(x)=log2(4-2x).    
(1)求f(x)-g(x)的定义域;
(2)求使f(x)-g(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
3
5
,2an+1an+an+1=3an,n∈N.
(1)求证:数列{
1
an
-1}为等比数列;
(2)是否存在互不相等的正整数m,s,t,使m,s,t成等差数列,且am-1,as-1,at-1成等比数列?如果存在,求出所有符合条件的m,s,t,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax+b(a>0),关于x的不等式f(x)≥c的解集为A.
(1)若f(1)=c=0,求集合A;
(2)若A=(-∞,m]∪[m+4,+∞),且f(x)的值域为[0,+∞),求
c
a

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒中有8件产品中,其中2件不合格品.从这8件产品中抽取2件,试求:
(Ⅰ)若采用无放回抽取,求取到的不合格品数X的分布列;
(Ⅱ)若采用有放回抽取,求至少取到1件不合格品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下题的解答过程:
已知正实数a,b满足a+b=1,求
2a+1
+
2b+1
的最大值
解:∵
2a+1
2
2a+1
2
+
2
2
2
=a+
3
2
2b+1
2
2b+1
2
+
2
2
2
=b+
3
2

相加得
2a+1
2
+
2b+1
2
=
2
2a+1
+
2b+1
)≤a+b+3=4∴
2b+1
+
2b+1
≤2
2
,等号在a=b=
1
2
时取得,即
2a+1
+
2b+1
的最大值为2
2

请类比上题解法,使用综合法证明下题:
已知正实数x,y,z满足x+y+z=2,求证:
2x+1
+
2y+1
+
2z+1
21

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位有老年人,中年人,青年人依次为25人,35人,40人,用分层抽样的方法抽取40人,则老、中、青的人数依次为
 

查看答案和解析>>

同步练习册答案