精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2(x+1),g(x)=log2(4-2x).    
(1)求f(x)-g(x)的定义域;
(2)求使f(x)-g(x)>0的x的取值范围.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:(1)根据对数函数的性质,以及复合函数定义域求法即可得到结论.
(2)利用对数函数的单调性解不等式即可.
解答: 解:(1)∵f(x)=log2(x+1),g(x)=log2(4-2x).    
∴f(x)-g(x)=log2(x+1)-log2(4-2x).
要使函数有意义,则
x+1>0
4-2x>0
,即
x>-1
x<2

则-1<x<2,即函数的定义域为(-1,2).
(2)∵f(x)-g(x)=log2(x+1)-log2(4-2x).-1<x<2,
∴若f(x)-g(x)=log2(x+1)-log2(4-2x)>0,
即log2(x+1)>log2(4-2x),
则x+1>4-2x,即x>1,
∵-1<x<2,∴1<x<2,
故不等式的解集为(1,2).
点评:本题主要考查对数函数的定义域以及与对数函数有关的不等式,利用对数函数的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f0(x)=xex,f1(x)=f0′(x),f2(x)=f1′(x),…fn(x)=fn-1′(x),n∈N*
(1)请写出fn(x)的表达式(不需要证明),并求fn(x)的极小值;
(2)设gn(x)=-x2-2(n+1)-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,证明:a-b≥e-4
(3)设φ(x)=x2+a|ln[f0(x)]-x-1|,(a>0),若φ(x)≥
3
2
a,x∈[1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C分别为△ABC的三边a、b、c所对的角,向量
m
=(sinA,sinB),
n
=(cosB,cosA),且
m
n
=sin2C.
(1)求角C的大小;
(2)若a,c,b成等差数列,且
CA
•(
AB
-
AC
)=18,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=x-(n2+2n)x2(其中n∈N*),区间In={x|fn(x)>0}.
(Ⅰ)求区间In的长度(注:区间(α,β)的长度定义为β-α);
(Ⅱ)把区间In的长度记作数列{an},令Sn=a1+a2+…+an,证明:
1
3
≤Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆E:
x2
a2
+y2=1(a>1)的左、右焦点,A,B分别为椭圆的上、下顶点,若F2到直线AF1的距离为
2

(1)求椭圆E的方程;
(2)过椭圆的右顶点C的直线l与椭圆交于点D(点D不同于点C),交y轴于点P(点P不同于坐标原点O),直线AD与BC交于点Q,试判断
OP
OQ
是否为定值,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),图象关于直线x=-
1
2
对称.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,
①若函数y=g(x)-m的零点有三个,求实数m的取值范围;
②求函数g(x)在[t,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件,求相应的等差数列{an}的有关未知数:
(1)a1=20,an=54,Sn=999,求d及n;
(2)d=2,n=15,an=-10,求a1及Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,点E在PD上,且PE=2ED.
(Ⅰ)求二面角P-AC-E的大小;
(Ⅱ)试在棱PC上确定一点F,使得BF∥平面AEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn
a
2(a-1)
an
,n(其中a≠0,a≠1)成等差数列,令bn=(an+1)lg(an+1).
(1)求数列{an}的通项公式an(用a,n表示);
(2)当a=
8
9
时,数列{bn}是否存在最小项,若存在,请求出第几项最小;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案