精英家教网 > 高中数学 > 题目详情
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,点E在PD上,且PE=2ED.
(Ⅰ)求二面角P-AC-E的大小;
(Ⅱ)试在棱PC上确定一点F,使得BF∥平面AEC.
考点:用空间向量求平面间的夹角,直线与平面平行的判定,二面角的平面角及求法
专题:综合题,空间位置关系与距离,空间角
分析:(Ⅰ)证明PA⊥平面ABCD,建立坐标系,求出平面ACE的一个法向量
n
=(1,-
3
,2
3
),平面ACP的一个法向量为
m
=(
3
2
,-
3
2
,0),利用向量的夹角公式,即可求二面角P-AC-E的大小;
(Ⅱ)取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.连接BF,MF,BM,OE.结合菱形的性质及三角形中位线定理及面面平行的判定定理可得平面BMF∥平面AEC,进而由面面平行的性质得到BF∥平面AEC.
解答: 解:(Ⅰ)∵底面ABCD是菱形,∠ABC=60°,
∴AB=AD=AC=1,
在△PAB中,由PA2+AB2=2=PB2,知PA⊥AB,
同理PA⊥AD
∴PA⊥平面ABCD.
建立坐标系,则A(0,0,0),B(
3
2
,-
1
2
,0),C(
3
2
1
2
,0),P(0,0,1),D(0,1,0),E(0,
2
3
1
3
),
AC
=(
3
2
1
2
,0),
AE
=(0,
2
3
1
3
),
设平面ACE的一个法向量为
n
=(x,y,z),则
3
2
x+
1
2
y=0
2
3
y+
1
3
z=0

可取
n
=(1,-
3
,2
3
),
同理平面ACP的一个法向量为
m
=(
3
2
,-
3
2
,0),
∴cos<
n
m
>=
1
2

∴二面角P-AC-E的大小为60°;
(Ⅱ)存在点F为PC的中点,使BF∥平面AEC.
理由如下:
取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.
连接BF,MF,BM,OE.
∵PE:ED=2:1,F为PC的中点,E是MD的中点,
∴MF∥EC,BM∥OE.
∵MF?平面AEC,CE?平面AEC,BM?平面AEC,OE?平面AEC,
∴MF∥平面AEC,BM∥平面AEC.
∵MF∩BM=M,
∴平面BMF∥平面AEC.
又BF?平面BMF,
∴BF∥平面AEC.
点评:本题考查的知识点是直线与平面平行的判定,用空间向量求平面间的夹角,(Ⅱ)的关键是证得平面BMF∥平面AEC.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),如图是这次调查统计分析得到的数据(如图所示).
(Ⅰ)求出第二组的频率并补全频率分布直方图;
(Ⅱ)根据频率分布直方图估计样本数据的众数、中位数、平均数;
(Ⅲ)估计购票用时在[10,20]分钟的人数约为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+1),g(x)=log2(4-2x).    
(1)求f(x)-g(x)的定义域;
(2)求使f(x)-g(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax+b(a>0),关于x的不等式f(x)≥c的解集为A.
(1)若f(1)=c=0,求集合A;
(2)若A=(-∞,m]∪[m+4,+∞),且f(x)的值域为[0,+∞),求
c
a

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒中有8件产品中,其中2件不合格品.从这8件产品中抽取2件,试求:
(Ⅰ)若采用无放回抽取,求取到的不合格品数X的分布列;
(Ⅱ)若采用有放回抽取,求至少取到1件不合格品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设无穷等比数列{an}的公比为q,且an>0(n∈N*),[an]表示不超过实数an的最大整数(如[2.5]=2),记bn=[an],数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn
(Ⅰ)若a1=4,q=
1
2
,求Tn
(Ⅱ)若对于任意不超过2014的正整数n,都有Tn=2n+1,证明:(
2
3
 
1
2012
<q<1.
(Ⅲ)证明:Sn=Tn(n=1,2,3,…)的充分必要条件为:a1∈N*,q∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下题的解答过程:
已知正实数a,b满足a+b=1,求
2a+1
+
2b+1
的最大值
解:∵
2a+1
2
2a+1
2
+
2
2
2
=a+
3
2
2b+1
2
2b+1
2
+
2
2
2
=b+
3
2

相加得
2a+1
2
+
2b+1
2
=
2
2a+1
+
2b+1
)≤a+b+3=4∴
2b+1
+
2b+1
≤2
2
,等号在a=b=
1
2
时取得,即
2a+1
+
2b+1
的最大值为2
2

请类比上题解法,使用综合法证明下题:
已知正实数x,y,z满足x+y+z=2,求证:
2x+1
+
2y+1
+
2z+1
21

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=n2+λn,当n∈N*,an≤an+1,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:3x+4y-12=0,则过点(-1,3)且与直线l的斜率相同的直线方程为
 

查看答案和解析>>

同步练习册答案