精英家教网 > 高中数学 > 题目详情
已知数列{an}的通项公式为an=n2+λn,当n∈N*,an≤an+1,求λ的最小值.
考点:数列的函数特性
专题:计算题,等差数列与等比数列
分析:由题意可得an+1=(n+1)2+λ(n+1),要满足n∈N*,an≤an+1,化简可得λ≥-2n-1,只需求出-2n-1的最大值即可.
解答: 解:∵an=n2+λn,
∴an+1=(n+1)2+λ(n+1)
∵an≤an+1
∴(n+1)2+λ(n+1)-n2-λn≥0
化简可得2n+1+λ≥0
∴λ≥-2n-1,对于任意正整数n都成立,
∴λ≥-3
∴λ的最小值为-3.
点评:本题考查数列的函数的特性,转化为不等式是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数fn(x)=x-(n2+2n)x2(其中n∈N*),区间In={x|fn(x)>0}.
(Ⅰ)求区间In的长度(注:区间(α,β)的长度定义为β-α);
(Ⅱ)把区间In的长度记作数列{an},令Sn=a1+a2+…+an,证明:
1
3
≤Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,点E在PD上,且PE=2ED.
(Ⅰ)求二面角P-AC-E的大小;
(Ⅱ)试在棱PC上确定一点F,使得BF∥平面AEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位学生参加数学竞赛培训,如图所示茎叶图的数据是他们在培训期间五次预赛的成绩.已知甲、乙两位学生的平均分相同.
(注:方差s2=
1
n
[(x1
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2])
(Ⅰ)求x以及甲、乙成绩的方差;
(Ⅱ)现由于只有一个参赛名额,请你用统计或概率的知识,分别指出派甲参赛、派乙参赛都可以的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面上,O为原点,M为动点,|
OM
|=
5
ON
=
2
5
5
OM
.过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线l交曲线C于两个不同的点P、Q(点Q在A与P之间).
(1)求曲线C的方程;
(2)证明不存在直线l,使得|BP|=|BQ|;
(3)过点P作y轴的平行线与曲线C的另一交点为S,若
AP
=t
AQ
,证明
SB
=t
BQ

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列中,a4=14,前n项和为Sn,S8=124.
(1)求{an}的通项公式;
(2)设bn=n(a2n-2),求数列{bn}和前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn
a
2(a-1)
an
,n(其中a≠0,a≠1)成等差数列,令bn=(an+1)lg(an+1).
(1)求数列{an}的通项公式an(用a,n表示);
(2)当a=
8
9
时,数列{bn}是否存在最小项,若存在,请求出第几项最小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

把正整数按一定的规则排成了如图所示的三角形数表.设aij(i,j∈N+)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a52=11.则a87=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为1的正方体ABCD-A1B1C1D1中,若
AB
=
a
AD
=
b
AA1
=
c
,则|
a
+
b
+
c
|=
 

查看答案和解析>>

同步练习册答案