精英家教网 > 高中数学 > 题目详情
为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500ml以上为常喝,体重超过50kg为肥胖.
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
4
15

(1)请将上面的列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少?参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
考点:独立性检验的应用
专题:计算题,概率与统计
分析:(1)根据全部50人中随机抽取1人看营养说明的学生的概率为
4
15
,做出看营养说明的人数,这样用总人数减去看营养说明的人数,剩下的是不看的,根据所给的另外两个数字,填上所有数字.
(2)根据列联表所给的数据,代入求观测值的公式,把观测值同临界值进行比较,得到有99.5%的把握说看营养说明与性别有关.
(3)利用列举法,求出基本事件的个数,即可求出正好抽到一男一女的概率.
解答: 解:(1)设常喝碳酸饮料肥胖的学生有x人,
x+3
30
=
4
15
,x=6

常喝不常喝合计
肥胖628
不胖41822
合计102030
-------------(3分)
(2)由已知数据可求得:K2=
30(6×18-2×4)2
10×20×8×22
≈8.522>7.879

因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.-------------(7分)
(3)设常喝碳酸饮料的肥胖者男生为A、B、C、D,女生为E、F,则任取两人有
AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF.故抽出一男一女的概率是p=
8
15
------------(12分)
点评:本题考查画出列联表,考查等可能事件的概率,考查独立性检验,在求观测值时,要注意数字的代入和运算不要出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=
2
+
sinx
π
,x∈R的最大值、最小值,并求使函数取得最大值、最小值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=4lnx-x2的大致图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|x|<1成立时,不等式1<x-a<4也成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个五位自然数
.
a1a2a3a4a5
;ai∈{0,1,2,3,4,5},i=1,2,3,45,当且仅当a1>a2>a3,a3<a4<a5时称为“凹数”(如32014,53134等),则满足条件的五位自然数中“凹数”的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+(2a+1)x+1-3a,其中,a≠0.若g(x)=
f(x)
a
,是否存在实数a,使得g[g(x)]=0只有一个实数根?若存在,请求出a的值或者a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.
(Ⅰ)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差S12、S22,并根据结果,你认为应该选派哪一个班的学生参加决赛?
(Ⅱ)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|-3≤x≤8},集合A={x|-1≤x<3},B={x|2<x≤5},求:
(1)A∩B;  
(2)A∪(∁UB);
(3)(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场组织有奖竞猜活动,参与者需要先后回答两道选择题,问题A有三个选项,问题B有四个选项,但都只有一个选项是正确的,正确回答问题A可获奖金25元,正确回答问题B可获奖金30元,活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止,假设一个参与者在回答问题前,对这两个问题都很陌生,只能用蒙猜的办法答题.
(1)如果参与者先回答问题A,求其获得奖金25元的概率;
(2)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.

查看答案和解析>>

同步练习册答案