ijÉ̳¡×éÖ¯Óн±¾º²Â»î¶¯£¬²ÎÓëÕßÐèÒªÏÈºó»Ø´ðÁ½µÀÑ¡ÔñÌ⣬ÎÊÌâAÓÐÈý¸öÑ¡ÏÎÊÌâBÓÐËĸöÑ¡Ïµ«¶¼Ö»ÓÐÒ»¸öÑ¡ÏîÊÇÕýÈ·µÄ£¬ÕýÈ·»Ø´ðÎÊÌâA¿É»ñ½±½ð25Ôª£¬ÕýÈ·»Ø´ðÎÊÌâB¿É»ñ½±½ð30Ôª£¬»î¶¯¹æ¶¨£º²ÎÓëÕß¿ÉÈÎÒâÑ¡Ôñ»Ø´ðÎÊÌâµÄ˳Ðò£¬Èç¹ûµÚÒ»¸öÎÊÌâ»Ø´ðÕýÈ·£¬Ôò¼ÌÐø´ðÌ⣬·ñÔò¸Ã²ÎÓëÕ߲½±»î¶¯ÖÕÖ¹£¬¼ÙÉèÒ»¸ö²ÎÓëÕßÔڻشðÎÊÌâǰ£¬¶ÔÕâÁ½¸öÎÊÌâ¶¼ºÜİÉú£¬Ö»ÄÜÓÃÃɲµİ취´ðÌ⣮
£¨1£©Èç¹û²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇóÆä»ñµÃ½±½ð25ÔªµÄ¸ÅÂÊ£»
£¨2£©ÊÔÈ·¶¨ÄÄÖֻشðÎÊÌâµÄ˳ÐòÄÜʹ¸Ã²ÎÓëÕß»ñ½±½ð¶îµÄÆÚÍûÖµ½Ï´ó£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿¼°Æä·Ö²¼ÁÐ
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©Ëæ»ú²Â¶ÔÎÊÌâAµÄ¸ÅÂÊP1=
1
3
£¬Ëæ»ú²Â¶ÔÎÊÌâBµÄ¸ÅÂÊP2=
1
4
£®ÓÉ´ËÄÜÇó³ö²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇÒ»ñµÃ½±½ð25Ôª¸ÅÂÊ£®
£¨2£©²ÎÓëÕ߻شðÎÊÌâµÄ˳ÐòÓÐÁ½ÖÖ£¬·Ö±ðÌÖÂÛÈçÏ£º¢ÙÏȻشðÎÊÌâAÔٻشðÎÊÌâB£¬²ÎÓëÕß»ñ½±½ð¶î¦Î¿ÉÈ¡0£¬25£¬55£¬¢ÚÏȻشðÎÊÌâBÔٻشðÎÊÌâA£¬²ÎÓëÕß»ñ½±½ð¶î¦Ç¿ÉÈ¡0£¬30£¬55£®·Ö±ðÇó³öÏàÓ¦µÄÆÚÍûÄܵõ½Ó¦¸ÃÏÈ´ðÎÊÌâA£¬ÔÙ´ðÎÊÌâBÄÜʹ¸Ã²ÎÓëÕß»ñ½±½ð¶îµÄÆÚÍûÖµ½Ï´ó£®
½â´ð£º ½â£º£¨1£©Ëæ»ú²Â¶ÔÎÊÌâAµÄ¸ÅÂÊP1=
1
3
£¬
Ëæ»ú²Â¶ÔÎÊÌâBµÄ¸ÅÂÊP2=
1
4
£®
Éè²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇÒ»ñµÃ½±½ð25ԪΪʼþM£¬
ÔòP(M)=P1(1-P2)=
1
3
¡Á
3
4
=
1
4
£¬
¼´²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇÒ»ñµÃ½±½ð25Ôª¸ÅÂÊΪ
1
4
£®£¨5·Ö£©
£¨2£©²ÎÓëÕ߻شðÎÊÌâµÄ˳ÐòÓÐÁ½ÖÖ£¬·Ö±ðÌÖÂÛÈçÏ£º
¢ÙÏȻشðÎÊÌâAÔٻشðÎÊÌâB£¬²ÎÓëÕß»ñ½±½ð¶î¦Î¿ÉÈ¡0£¬25£¬55£¬
ÔòP(¦Î=0)=1-P1=
2
3
£¬
P(¦Î=25)=P1(1-P2)=
1
4
£¬
P(¦Î=55)=P1P2=
1
12
£¨8·Ö£©
E(¦Î)=
130
12
£®
¢ÚÏȻشðÎÊÌâBÔٻشðÎÊÌâA£¬²ÎÓëÕß»ñ½±½ð¶î¦Ç¿ÉÈ¡0£¬30£¬55
ÔòP(¦Ç=0)=1-P2=
3
4
£¬
P(¦Ç=30)=P2(1-P1)=
1
6
£¬
P(¦Ç=55)=P1P2=
1
12
£¬
E(¦Ç)=
115
12
£®
ÒòΪE£¨¦Î£©£¾E£¨¦Ç£©£¬ËùÒÔÓ¦¸ÃÏÈ´ðÎÊÌâA£¬ÔÙ´ðÎÊÌâB£®£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬ÔÚÀúÄê¸ß¿¼Öж¼ÊDZؿ¼ÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ΪÁ˽âÉÙÄê¶ùͯµÄ·ÊÅÖÊÇ·ñÓë³£ºÈ̼ËáÒûÁÏÓйأ¬ÏÖ¶Ô30ÃûÁùÄ꼶ѧÉú½øÐÐÁËÎʾíµ÷²éµÃµ½ÈçÏÂÁÐÁª±í£ºÆ½¾ùÿÌìºÈ500mlÒÔÉÏΪ³£ºÈ£¬ÌåÖØ³¬¹ý50kgΪ·ÊÅÖ£®
³£ºÈ²»³£ºÈºÏ¼Æ
·ÊÅÖ2
²»·ÊÅÖ18
ºÏ¼Æ30
ÒÑÖªÔÚÈ«²¿30ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½·ÊÅÖµÄѧÉúµÄ¸ÅÂÊΪ
4
15
£®
£¨1£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû
£¨2£©ÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪ·ÊÅÖÓë³£ºÈ̼ËáÒûÁÏÓйأ¿ËµÃ÷ÄãµÄÀíÓÉ
£¨3£©ÏÖ´Ó³£ºÈ̼ËáÒûÁÏÇÒ·ÊÅÖµÄѧÉúÖУ¨2ÃûÅ®Éú£©£¬³éÈ¡2È˲μӵçÊÓ½ÚÄ¿£¬ÔòÕýºÃ³éµ½Ò»ÄÐһٵĸÅÂÊÊǶàÉÙ£¿²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½£ºK2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
£¬ÆäÖÐn=a+b+c+d£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

·½³Ìx2+y2+2ax+2by+a2+b2=0±íʾµÄͼÐÎÊÇ£¨¡¡¡¡£©
A¡¢ÒÔ£¨a£¬b£©ÎªÔ²ÐĵÄÔ²
B¡¢ÒÔ£¨-a£¬-b£©ÎªÔ²ÐĵÄÔ²
C¡¢µã£¨a£¬b£©
D¡¢µã£¨-a£¬-b£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1cm£¬´ÖʵÏßΪij¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A¡¢2cm3
B¡¢4cm3
C¡¢6cm3
D¡¢8cm3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=x2+aln£¨x+2£©¡¢g£¨x£©=xex£¬ÇÒf£¨x£©´æÔÚÁ½¸ö¼«Öµµãx1¡¢x2£¬ÆäÖÐx1£¼x2£®
£¨¢ñ£©ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©Çóg£¨x1-x2£©µÄ×îСֵ£»
£¨¢ó£©Ö¤Ã÷²»µÈʽ£º
f(x1)
x2
£¼-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèm¡¢nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á¡¢¦ÂÊÇÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÏÂÁÐÃüÌâÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A¡¢Èôm¡Í¦Á£¬m¡În£¬n¡Î¦Â£¬Ôò¦Á¡Í¦Â
B¡¢Èô¦Á¡Í¦Â£¬m?¦Á£¬m¡Í¦Â£¬Ôòm¡Î¦Á
C¡¢Èôm¡Í¦Â£¬m?¦Á£¬Ôò¦Á¡Í¦Â
D¡¢Èô¦Á¡Í¦Â£¬m?¦Á£¬n?¦Â£¬Ôòm¡Ín

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©=
lg(x2-1)
-x2+x+2
µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A¡¢£¨-¡Þ£¬-2£©¡È£¨1£¬+¡Þ£©
B¡¢£¨-2£¬1£©
C¡¢£¨-¡Þ£¬-1£©¡È£¨2£¬+¡Þ£©
D¡¢£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©ÎªÒ»´Îº¯Êý£¬ÇÒf£¨f£¨x£©£©=16x-5£¬Çóf£¨x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô
a
=£¨6£¬m£©£¬
b
=£¨2£¬-1£©£¬
a
¡Î
b
£¬Ôòm=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸