Óò¿·Ö×ÔÈ»Êý¹¹ÔìÈçͼµÄÊý±í£ºÓÃaij£¨i¡Ýj£©±íʾµÚiÐеÚj¸öÊý£¨i£¬j¡ÊN+£©£¬Ê¹µÃai1=aij=i£®Ã¿ÐÐÖÐµÄÆäËû¸÷Êý·Ö±ðµÈÓÚÆä¡°¼ç°ò¡±ÉϵÄÁ½¸öÊýÖ®ºÍ£®ÉèµÚn£¨n¡ÊN+£©ÐÐÖеĸ÷ÊýÖ®ºÍΪbn£®
£¨1£©Ð´³öb1£¬b2£¬b3£¬b4£¬²¢Ð´³öbn+1ÓëbnµÄµÝÍÆ¹ØÏµ£¨²»ÒªÇóÖ¤Ã÷£©£»
£¨2£©Áîcn=bn+2£¬Ö¤Ã÷{cn}ÊǵȱÈÊýÁУ¬²¢Çó³ö{bn}µÄͨÏʽ£»
£¨3£©ÊýÁÐ{bn}ÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br£¨p£¬q£¬r¡ÊN+£©Ç¡ºÃ³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³öp£¬q£¬rµÄ¹ØÏµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÄÓ¦ÓÃ
רÌ⣺
·ÖÎö£º£¨1£©ÀûÓÃÊý±í£¬¿ÉÇób1£¬b2£¬b3£¬b4£¬²¢ÇÒbn+1=a£¨n+1£©1+a£¨n+1£©2+¡­+a£¨n+1£©£¨n+1£©=2£¨an1+an2+¡­+ann£©+2=2bn+2£®
£¨2£©ÓÉbn+1=2bn+2£¬¿ÉµÃbn+1+2=2£¨bn+2£©£¬´Ó¶ø{bn+2}ÊÇÒÔb1+2=3ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬¼´¿ÉÇó³ö{bn}µÄͨÏʽ£»
£¨3£©Éèp£¾q£¾r£¬{bn}ÊǵÝÔöÊýÁУ¬2bq=bp+br£¬ÓÉ´ËÄܵ¼³öÊýÁÐ{bn}Öв»´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬brÇ¡ºÃ³ÉµÈ²îÊýÁУ®
½â´ð£º £¨1£©½â£ºb1=1£¬b2=2+2=4£¬b3=3+4+3=10£¬b4=4+7+7+4=22£¬
bn+1=a£¨n+1£©1+a£¨n+1£©2+¡­+a£¨n+1£©£¨n+1£©=n+1+£¨an1+an2£©+¡­+£¨an£¨n-1£©ann£©+n+1=2£¨an1+an2+¡­+ann£©+2=2bn+2£»
£¨2£©Ö¤Ã÷£º¡ßbn+1=2bn+2£¬
¡àbn+1+2=2£¨bn+2£©
¡à{bn+2}ÊÇÒÔb1+2=3ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡ßcn=bn+2£¬¡à{cn}ÊǵȱÈÊýÁУ¬
¡ßbn+2=cn=3•2n-1£¬
¡àbn=3•2n-1-2£»
£¨3£©½â£ºÈôÊýÁÐ{bn}ÖдæÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br£¨p£¬q£¬r¡ÊN*£©Ç¡ºÃ³ÉµÈ²îÊýÁУ¬
²»·ÁÉèp£¾q£¾r£¬ÏÔÈ»{bn}ÊǵÝÔöÊýÁУ¬Ôò2bq=bp+br£¨12·Ö£©
¼´2£¨3•2q-1-2£©=£¨3•2p-1-2£©+£¨3•2r-1-2£©£¬»¯¼òµÃ£º2•2q-r=2p-r+1£¨*£©£¨14·Ö£©
ÓÉÓÚp£¬q£¬r¡ÊN*£¬ÇÒp£¾q£¾r£¬Öªq-r¡Ý1£¬p-r¡Ý2£¬
¡à£¨*£©Ê½×ó±ßΪżÊý£¬ÓÒ±ßÎªÆæÊý£¬
¹ÊÊýÁÐ{bn}Öв»´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br£¨p£¬q£¬r¡ÊN*£©Ç¡ºÃ³ÉµÈ²îÊýÁУ®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁк͵ȱÈÊýÁеĻù±¾ÐÔÖʺÍÊýÁеĵÝÍÆ¹«Ê½£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¯µãPÔÚº¯Êýy=sin2xµÄͼÏóÉÏÒÆ¶¯£¬¶¯µãQ£¨x£¬y£©Âú×ã
PQ
=£¨
¦Ð
8
£¬0£©£¬Ôò¶¯µãQµÄ¹ì¼£·½³ÌΪ£¨¡¡¡¡£©
A¡¢y=sin£¨2x+
¦Ð
8
£©
B¡¢y=sin£¨2x-
¦Ð
8
£©
C¡¢y=sin£¨2x+
¦Ð
4
£©
D¡¢y=sin£¨2x-
¦Ð
4
£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=sin£¨¦Øx-
¦Ð
6
£©-2cos2
¦Ø
2
x+1£¨¦Ø£¾0£©£®Ö±Ïßy=
3
Ó뺯Êýy=f£¨x£©Í¼ÏóÏàÁÚÁ½½»µãµÄ¾àÀëΪ¦Ð£®
£¨¢ñ£©Ç󦨵ÄÖµ£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðÊÇa¡¢b¡¢c£¬Èôµã£¨
B
2
£¬0£©ÊǺ¯Êýy=f£¨x£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄ£¬ÇÒb=3£¬Çó¡÷ABCÖܳ¤µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªa£¾0ÇÒa¡Ù1£¬f£¨x£©=
a
a2-1
£¨ax-a-x£©
£¨1£©ÅжϺ¯Êýf£¨x£©µÄÆæÅ¼ÐÔ£»
£¨2£©ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£¬²¢Ö¤Ã÷£»
£¨3£©µ±º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨-1£¬1£©Ê±£¬Çóʹf£¨1-m£©+f£¨1-m2£©£¼0³ÉÁ¢µÄʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ijÖÖͬÐͺŵÄ6Æ¿ÒûÁÏÖÐÓÐ2Æ¿ÒѹýÁ˱£ÖÊÆÚ£®
£¨1£©´Ó6Æ¿ÒûÁÏÖÐÈÎÒâ³éÈ¡1Æ¿£¬Çó³éµ½Ã»¹ý±£ÖÊÆÚµÄÒûÁϵĸÅÂÊ£»
£¨2£©´Ó6Æ¿ÒûÁÏÖÐËæ»ú³éÈ¡2Æ¿£¬Çó³éµ½Òѹý±£ÖÊÆÚµÄÒûÁϵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîµÄºÍΪSn£¬a5+a6=11£¬S4=10£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÒÑÖªÊýÁÐ{bn}ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{anbn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
lg(x2-2x)
9-x2
µÄ¶¨ÒåÓòΪA£¬
£¨1£©ÇóA£»
£¨2£©ÈôB={x|x2-2x+1-k2¡Ý0}£¬ÇÒA¡ÉB¡Ù∅£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªËÄÀâ×¶P-ABCD£¬µ×ÃæABCDÊÇ¡ÏA=60¡ã¡¢±ß³¤ÎªaµÄÁâÐΣ¬ÓÖPD¡Íµ×ABCD£¬ÇÒPD=CD£¬µãM¡¢N·Ö±ðÊÇÀâAD¡¢PCµÄÖе㣮
£¨1£©Ö¤Ã÷£ºMB¡ÍÆ½ÃæPAD£»
£¨2£©ÇóµãAµ½Æ½ÃæPMBµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lnx+2x£¬Èôf£¨x2-4£©£¼2£¬ÔòʵÊýxµÄȡֵ·¶Î§
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸