精英家教网 > 高中数学 > 题目详情
5.如图,四棱锥S-ABCD中底面ABCD是正方形,AS⊥底面ABCD,且AS=AB,E是SC的中点,求证:平面BDE⊥平面ABCD.

分析 根据面面垂直的判定定理即可证明平面BDE⊥平面ABCD.

解答 证明:连结AC交BD于O,连结OE.
则OE是△SAC的中位线,
则OE∥SA,
∵AS⊥底面ABCD,
∴OE⊥平面ABCD,
∵OE?平面BDE,
∴平面BDE⊥平面ABCD.

点评 本题考查空间平面与平面的位置关系:垂直.考查平面与平面垂直的判定定理的运用,考查空间想象能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知甲、乙两人在一次射击中命中目标的概率分别为$\frac{2}{3}$和$\frac{3}{4}$,假设两人射击相互独立,且每人各次射击互不影响.
(Ⅰ)若甲、乙两人各射击1次,求至少有一个命中目标的概率;
(Ⅱ)若甲、乙两人各射击4次,求甲命中目标2次,且乙命中目标3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)+2sin2$\frac{ωx+φ}{2}$-1(ω>0,0<φ<π),相邻两对称轴间的距离为$\frac{π}{2}$,且f(0)=0
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象沿x轴方向向右平移$\frac{π}{6}$个单位长度,再把横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),得到函数y=g(x)的图象.当x∈[-$\frac{π}{12},\frac{π}{6}$]时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和Sn满足:Sn=$\frac{a}{a-1}$(an-1)(a为常数,且a≠0,a≠1).
(1)求{an}的通项公式;
(2)bn=$\frac{2{S}_{n}}{{a}_{n}}$+1,若数列{bn}为等比数列,求a的值;
(3)在(2)的条件下,设数列{2-lgbn}的前n项和为Tn,问:n为何值时,Tn最大?并求出Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求证:1+$\frac{1}{3^2}$+$\frac{1}{5^2}$+…+$\frac{1}{(2n-1)^2}$>$\frac{7}{6}$-$\frac{1}{2(2n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知0<m<1,设a=logm(m2+1),b=logm(m+1),c=logm(2m),则a,b,c的大小关系是(  )
A.c>a>bB.a>c>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.极坐标中,椭圆C的中心在极点O,短轴端点为P(1,$\frac{π}{2}$),一个焦点为F($\sqrt{3}$,0).
(1)写出椭圆C的极坐标方程;
(2)点A、B在椭圆上,且OA⊥OB,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.化简:$\sqrt{2}$sin($\frac{π}{4}$-x)+$\sqrt{6}$cos($\frac{π}{4}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若复数z满足3z+$\overline z$=1+i,其中i是虚数单位,则z=$\frac{1}{4}+\frac{1}{2}i$.

查看答案和解析>>

同步练习册答案