精英家教网 > 高中数学 > 题目详情
已知直线都在平面外, 则下列推断错误的是(   )
A.B.
C.D.
C

试题分析:对A,根据直线与平面平行的判定定理知,成立.对B,结合空间模型可知成立.
对C,显然还可以相交,也可以异面.故错.D,因为垂直于同一平面的两条直线互相平行,故成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知平行六面体ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O。

(Ⅰ)求证:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.

(1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,

(Ⅰ)求证:
(Ⅱ)设

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC =60°,AB=PC=2,AP=BP=

(Ⅰ)求证:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为正方形,PA平面ABCD,且AD= 2PA,E、F、G、H分别是线段PA、PD、CD、BC的中点.

(I)求证:BC∥平面EFG;
(II)求证:DH平面AEG.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱锥中,底面是平行四边形,平面,垂足为上且的中点,四面体的体积为.

(1)求过点P,C,B,G四点的球的表面积;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使,若存在,确定点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中正确的个数是(  ).
(1)若直线上有无数个点不在平面内,则.
(2)若直线与平面平行,则与平面内的任意一条直线都平行.
(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.
(4)若直线与平面平行,则与平面内的任意一条直线都没有公共点.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于平面和直线,下列命题中真命题是(    )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

同步练习册答案