精英家教网 > 高中数学 > 题目详情
20.求曲线y=$\sqrt{8}$x和y=6-x,x=0围成图形的面积.

分析 画出几何图形,求解|OB|=6,A到x=0的距离为$\frac{6}{2\sqrt{2}+1}$,根据三角形的面积求解即可.

解答 解:∵y=$\sqrt{8}$x和y=6-x,x=0围成图形为阴影部分

可求解A($\frac{6}{2\sqrt{2}+1}$,$\frac{12\sqrt{2}}{2\sqrt{2}+1}$)
B(0,6),O(0,0)
|OB|=6,A到x=0的距离为$\frac{6}{2\sqrt{2}+1}$,
∴根据三角形的面积得出:$\frac{1}{2}×6×\frac{6}{2\sqrt{2}+1}$=$\frac{18}{2\sqrt{2}+1}$=$\frac{36\sqrt{2}-18}{7}$
y=$\sqrt{8}$x和y=6-x,x=0围成图形为阴影部分面积为$\frac{36\sqrt{2}-18}{7}$.

点评 本题考查了函数关系式的运用,结合图形求解面积问题,难度很小,属于容易题,关键是确定点,得出线段的长度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y≤3\end{array}$,若z=2x+y的最大值和最小值分别为a,b,则a+b=(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三棱锥P-ABC中,AC=BC=AP=BP=$\sqrt{2}$,PC=$\sqrt{3}$,AB=2.求证:PC⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{x+1}{x}$图象的对称中心为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)是定义在R上的奇函数,且f(x-2)=f(x+2),当0<x<2时,f(x)=1-log2(x+1),则当0<x<4时,不等式(x-2)f(x)>0的解集是(  )
A.(0,1)∪(2,3)B.(0,1)∪(3,4)C.(1,2)∪(3,4)D.(1,2)∪(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且满足Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,数列{log3bn}{n∈N*}为等差数列,且b1=3,b3=27.
(1)求数列{an}与{bn}的通项公式;
(2)若cn=an-$\frac{5}{12}$,Tn=b1c1+b2c2+b3c3+…+bncn,求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知四面体ABCD中,每个面都有两条边长为3,有一边为2,则四面体ABCD外接球的表面积为11π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点P是椭圆$\frac{{x}^{2}}{2}$+y2=1上的任意一点,F1,F2是它的两个焦点,O为坐标原点,动点Q满足
$\overrightarrow{OQ}$=$\overrightarrow{PF_1}$+$\overrightarrow{PF_2}$.
(Ⅰ)求动点Q的轨迹E的方程;
(Ⅱ)若与坐标轴不垂直的直线l交轨迹E于A,B两点且OA⊥OB,求三角形OAB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,若m项依次构成首项为1,公差为-2的等差数列,第m+1项至第2m项依次构成首项为1,公比为$\frac{1}{2}$的等比数列.其中m≥3,m∈N*
(1)当1≤n≤2m时,求an
(2)若对任意的n∈N*,都有an+2m=an,设数列{an}的前n项和为Sn,求证:S4m+3≤-$\frac{11}{2}$.

查看答案和解析>>

同步练习册答案