精英家教网 > 高中数学 > 题目详情
已知四面体P-ABC的四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=1,PB=AB=2,则球O的体积为(  )
A、
16
2
π
B、
32
3
π
C、4π
D、
9
2
π
考点:球的体积和表面积
专题:计算题,空间位置关系与距离,球
分析:根据条件,根据四面体P-ABC构造长方体,然后根据长方体和球的直径之间的关系,即可求出球的半径,再求球的体积公式计算即可得到.
解答: 解:∵PB⊥平面ABC,AB⊥AC,且AC=1,PB=AB=2,
∴构造长方体,则长方体的外接球和四面体的外接球是相同的,
则长方体的体对角线等于球的直径2R,
则2R=
12+22+22
=3,
∴R=
3
2

则球O的体积为
4
3
πR3=
4
3
π×(
3
2
3=
9
2
π.
故选D.
点评:本题主要考查空间几何体的位置关系,利用四面体构造长方体是解决本题的关键,利用长方体的体对角线等于球的直径是本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
(
1
3
)
x
-1
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从区间(-3,3)中任取两个整数a,b,设点(a,b)在圆x2+y2=3内的概率为 P1,从区间(-3,3)中任取两个实数a,b,直线ax+by+3=0和圆x2+y2=3相离的概率为 P2,则(  )
A、P1>P2
B、P1<P2
C、P1=P2
D、P1和 P2的大小关系无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,且对任意x都有f(x+2)=f(x).当x∈[0,1)时,f(x)=2x-1,则f(log
1
2
6)的值为(  )
A、-
5
2
B、-5
C、-
1
2
D、-6

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,已知直线l的极坐标方程 为ρsin(θ+
π
4
)=1,圆C的圆心是C(1,
π
4
),半径为1,求:
(1)圆C的极坐标方程;
(2)直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,a1=2,a3=6.
(1)求数列{an}的通项公式;
(2)设bn=
2
n(an+2)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(x1,y1),B(x2,y2)是f(x)=
1
2
+log2
x
1-x
图象上任意两点,设点M(
1
2
,b)为AB的中点,若Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
),其中n∈N+,则n≥2,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形 A BC中,A,B,C是三角形 A BC的内角,设函数f(A)=2sin
B+C
2
sin(π-
A
2
)+sin2(π+
A
2
)-cos2
A
2
,则f( A)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(wx+φ)(w>0,A>0,|φ|<
π
2
)的图象如图所示,
(1)求f(x)的解析式;
(2)若f(
θ
2
-
π
6
)=
12
5
,θ∈(0,
π
2
),求cos(θ-
π
3
)的值.

查看答案和解析>>

同步练习册答案