精英家教网 > 高中数学 > 题目详情
已知任意向量
a
b
及实数λ,那么“λ
a
+
b
=0”成立是“
a
b
”成立的(  )
A、充分非必要条件
B、必要非充分条件
C、充分必要条件
D、非充分必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:利用向量共线定理即可判断出.
解答: 解:λ
a
+
b
=
0
a
b
,反之不一定成立,例如
a
=
0
b
0

∴“λ
a
+
b
=
0
”成立是“
a
b
”成立的充分非必要条件.
故选:A.
点评:本题考查了向量共线定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且an+Sn=4.
(1)求数列{an}的通项公式;
(2)是否存在正整数k,使
Sk+1-2
Sk-2
>2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式mx-n>0的解集为(-∞,3),则关于x的不等式
mx+n
x-2
>0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

P是双曲线
x2
8
-y2=1上一点,M,N为双曲线的两个焦点.
(1)当∠MPN=
π
3
时,求△MPN的面积;
(2)当∠MPN为锐角时,求P的横坐标xp的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若原点O到直线Ax+By+C=0的距离为1,则A2+B2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过两条曲线x2+y2+3x-y=0和3x2+3y2+2x+y=0交点的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示:在四棱锥中A-BCDE中,AE⊥面EBCD,且四边形EBCD是菱形,∠BED=120°,AE=BE=2,F是BC上的动点(不包括端点),当F时BC的中点时,求点F到面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(Ⅰ)当a>2时,求函数f(x)的单调递增区间;
(Ⅱ)当a=4时,给出两组直线:6x+y+m=0,3x-y+n=0,其中m,n为常数,判断这两组直线中是否存在y=f(x)的切线,若存在,求出切线方程;
(Ⅲ)设定义在D上的函数y=h(x)在点P(x0,h(xo))处的切线方程为y=g(x),若
h(x)-g(x)
x-x0
>0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”?若存在,请求出一个“类对称点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,O是极点,点A(
3
π
6
),B(4,
3
)
,则以线段OA、OB为邻边的平行四边形的面积是
 

查看答案和解析>>

同步练习册答案